| 研究生: |
林博仁 Lin, Bo-Ren |
|---|---|
| 論文名稱: |
高分子半導體/絕緣體混摻之薄膜電晶體研究及其應用 The study of polymeric semiconductor/insulator blend thin-film transistors and their applications |
| 指導教授: |
鄭弘隆
Cheng, Horng-Long |
| 共同指導: |
王右武
Wang, Yu-Wu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 有機薄膜晶體 、電特性和穩定性 、結構和形態 、雙閘極有機薄膜電晶體 、閾值電壓 、邏輯閘 、拉曼製圖 、聚合物混摻 、相分離 、異質結主動層 、光感電晶體 、光敏性 |
| 外文關鍵詞: | Organic thin film transistor (OTFT), electrical characteristics and stability, structure and morphology, dual-gate OTFT, threshold voltage, logic gate, Raman mapping, polymer blend, phase-separated, heterojunction, phototransistor, photosensitivity |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要研究有機薄膜晶體(OTFT)的電性能及其相關應用。研究了將絕緣聚合物材料導入有機半導體主動層的相關效果。研究中使用的混摻主動層是由基於半導體材料poly (3-hexylthiophene) (P3HT)與絕緣材料poly (methyl methacrylate) (PMMA)所組成。本文共分為五章。第一章簡要介紹了基於有機/聚合物半導體的OTFT。在第二章中,我們研究了在各種條件下製備的基於P3HT:PMMA混摻OTFT的電特性。在第三章中,我們使用具有偽雙層結構的基於P3HT:PMMA混摻主動層在不同氣氛下對OTFT進行了電穩定性研究。在第四章中,研究了基於P3HT:PMMA混摻雙閘極OTFT的電特性,並展示了其在多功能應用中的巨大潛力。在第五章中,我們討論了基於雙層異質結主動層的光感電晶體,該主動層的製作是通過N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide, PTCDI-C13H27沉積P3HT:PMMA混摻主動層上。最後對論文進行了總結。
在第二章中,我們研究了基於P3HT:PMMA混摻主動層的製備條件對相應OTFT的電特性的影響。通過溶液製程,使用幾種不同的溶劑,製備了具有各種組成的P3HT:PMMA二元混摻主動層,以獲得具有多種相分離形態的微結構。討論了主動層的微結構性質與相應的OTFT的電性之間的相關性。與純P3HT OTFT相比,P3HT:PMMA混摻OTFT的電性能有所提高。OTFT的性能與P3HT:PMMA混摻主動層的相分離的微觀結構特性密切相關。
在第三章中,我們探討了基於P3HT:PMMA混摻OTFT在各種環境中的操作穩定性。純P3HT元件通常表現出顯著的非理想,不穩定和快速衰減的電氣特性,尤其是在潮濕的空氣環境中,這阻礙了它們的實際應用。在本節研究中,即使是在環境空氣中,基於P3HT元件之動態操作穩定性也可通過製備具有嵌入式源電極和漏電極的半導體/絕緣體多摻混物的偽雙層結構來實現。此偽雙層主動層由PMMA緩衝層與P3HT:PMMA混摻主動層所結合。具有偽雙層主動層的P3HT:PMMA混摻元件在環境空氣中的動態連續操作下也可以抵抗閘極偏壓而具有很強的耐受性,因此顯示出出乎意料的非衰減電流特性。
在第四章中,提出了具有不對稱頂部和底部電荷調製層(CML)的設計來改進P3HT:PMMA雙閘極混摻OTFT的電特性,從而證明了OTFT具有增強的功能,即大電流增強行為,高效的閾值電壓可控性和獨立的雙重邏輯門功能。此CML透過多層堆疊自動生成的,其包含了P3HT:PMMA混摻主動層、poly(vinylidene fluoride) (PVDF)緩衝層和cross-linkedpoly(4-vinylphenol) (cPVP)絕緣層。由於非對稱的CML存在,P3HT:PMMA雙閘極混摻元件具有空前的電特性,例如頂部閘極電位容易影響底部通道層。然而,僅當施加底閘極電壓(正或負)時,頂部通道層才能正常運作。根據此不尋常的電特性,可使用一雙閘極電晶體即可實現基本雙重邏輯閘功能。
在第五章中,我們使用P3HT:PMMA/PTCDI-C13異質結主動雙層製作光感TFT,並研究其電和光響應特性。將PTCDI-C13沉積到具有各種相分離形態的P3HT:PMMA混摻主動層上,以在界面上形成具有不同分子構型的各種異質界面。與純P3HT層和P3HT/PTCDI-C13雙層作為主動層的光感TFT相比,基於P3HT:PMMA/PTCDI-C13元件的光敏性顯著提高。在微觀水平上討論了所製備的具有特定異質結的光感TFT增強光響應的可能起源。
This thesis focused on the electrical properties of organic thin-film transistors (OTFTs) and their related applications. The related effects of introducing insulating polymer materials into the organic semiconducting active layer were investigated. The active layers used in this study were based on the polyblends of semiconducting regioregular poly(3-hexylthiophene) (P3HT, a p-channel material) with insulating poly(methyl methacrylate) (PMMA). This thesis is divided into five chapters. Chapter 1 gives a brief introduction of organic/polymeric semiconductor-based OTFTs. In Chapter 2, we studied the electrical characteristics of OTFTs based on P3HT:PMMA blends prepared under various conditions. In Chapter 3, we performed an electrical stability study of OTFTs at various atmospheres using a P3HT:PMMA blend-based pseudo-bilayer. In Chapter 4, the electrical characteristics of P3HT:PMMA blend-based dual-gate OTFTs were studied, and showed their great potential for multifunction applications. In Chapter 5, we discussed phototransistors based on bilayer heterojunction active layers prepared by the deposition of a thin N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13H27, an electron acceptor) layer upon the P3HT:PMMA blend-based bottom layer. The last chapter presented a summary of the thesis.
In Chapter 2, we investigated the effects of preparation conditions of P3HT:PMMA blend-based active layer on the electrical characteristics of the corresponding OTFTs. The P3HT:PMMA binary blend-based active layers with various compositions were prepared by spin-coating process using several different solvents to obtain microstructures with diversified phase-separation morphology. Correlation between the microstructural properties of the active layers and the electrical properties of the corresponding OTFTs were discussed. Compared with neat P3HT-based OTFTs, the electrical performances of P3HT:PMMA polyblend-based OTFTs were improved. The OTFT’s performances were strongly related to the phase-separated microstructural properties of the P3HT:PMMA blend active layers.
In Chapter 3, we explored the operational stability of the P3HT:PMMA blend-based OTFTs in various environments. Neat P3HT-based OTFTs often exhibit significant non-ideal, unstable, and fast-decaying electrical characteristics, especially in a moisture-containing ambient air environment, which hindered their practical applications. The dynamic operational stability of P3HT-based OTFTs even in ambient air can be achieved through the preparation of a P3HT:PMMA blend-based pseudo-bilayer configuration with embedded source and drain electrodes. The pseudo-bilayer active layer consisted of a PMMA bottom layer and a P3HT:PMMA blend top layer. The OTFTs with the pseudo-bilayer active layer have strong endurance against gate-bias stress even under dynamic continuous operation conditions in ambient air, thereby showing unexpected non-decaying current features.
In Chapter 4, the improved electrical characteristics of P3HT:PMMA blend-based dual-gate (DG) OTFTs with asymmetric top and bottom charge modulation layers (CMLs) design were presented, thus demonstrating OTFTs with enhanced functionality, i.e., large current enhancement behavior, highly efficient threshold voltage controllability, and self-contained dual-mode logic gate features. The asymmetric CMLs are automatically generated through the preparation of stacks of the P3HT:PMMA blend layer, poly(vinylidene fluoride) (PVDF) buffer layer, and cross-linked poly(4-vinylphenol) (cPVP) insulator layer. Owing to the presence of asymmetric CMLs, the P3HT:PMMA blend-based DG-OTFTs exhibited unprecedented electrical characteristics, such as the easy depletion of the bottom channel by the top gate potential. However, the top channel can work properly only when given a bottom gate potential (either positive or negative). Given these unusual electrical features, the design of the fundamental dual-mode logic gates can be achieved with only one DG transistor.
In Chapter 5, we investigated the electrical and photoresponse properties of OTFTs using P3HT:PMMA blend/PTCDI-C13 heterojunction active bilayer. A PTCDI-C13 top layer was thermally deposited onto the P3HT:PMMA blend bottom layers with various phase-separated morphologies to form varied heterogeneous interfaces with different molecular configurations on the interface. Compared with OTFTs that use the neat P3HT layer and P3HT/PTCDI-C13 bilayer as the active layer, the photosensitivity of P3HT:PMMA/PTCDI-C13-based OTFTs was significantly enhanced. The possible origins of the enhanced photoresponse of the as-prepared OTFTs with specific heterojunction were discussed at the microscopic level.
[1] Shirakawa, H.; Louis, E.-J.; MacDiarmid, A.-G.; Chiang, C.-K.; Heeger, A.-J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH). J. Chem. Soc., Chem. Commun. 1977, 16, 578–580.
[2] Tsumura, A.; Koezuka, H.; Ando, T. Macromolecular Electronic Device : Field Effect Transistor with A Polythiophene Thin Film. Appl. Phys. Lett. 1986, 49, 1210–1212.
[3] Jackson, T.-N.; Lin, Y.-Y.; Gundlach, D.-J.; Klauk, H. Organic Thin-Film Transistors for Organic Light-Emitting Flat-Panel Display Backplanes. IEEE J. Sel. Top. Quantum Electron. 1998, 4, 100-104.
[4] Bao, Z.; Dadabalapur, A.; Katz, H.-E.; Raju, R.-V.; Rogers, J.-A. Organic Semiconductors for Plastic Electronics. IEEE TAB New Technology Directions Committee (NTDC), 2001 IEEE Workshop on New and Emmerging Technologies 2001.
[5] Cantatore, E.; Gelinck, G.-H.; de Leeuw, D.-M. Polymer Electronics: from Discrete Transistors to Integrated Circuits and Actrive Matrix Displays. IEEE Procedings of the Bipolar/BiCMOS Circuits and Technoly Meetings. 2002, p. 167.
[6] Kawasaki, M.; Ando, M.; Imazeki, S.; Sekiguchi, Y.; Hirota, S.; Sasaki, H.; Uemura, S.; Kamata, T. Printable Organic TFT Technologies for FPD Applications. Proc. SPIE 2005, 5940, 59400 Q1-5940010.
[7] Bao, Z.; Dodabalapur, A.; Lovinger, A.-J. Soluble and Processable Regioregular Poly(3-hexylthiophene) for Thin Film Field-Effect Transistor Application with High Mobility. Appl. Phys. Lett. 1996, 69, 4108.
[8] Bao, Z.; Feng, Y.; Dodabalapur, A.; Raju, V.-R.; Lovinger, A.-J. High Performance Plastic Transistors Fabricated by Printing Techniques. Chem. Mater. 1997, 9, 1299.
[9] McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M.-L.; Kline, R.-J.; McGehee, D.; Toney, M.-F. Liquid Crystalline Semiconducting Polymers with High Charge-Carrier Mobility. Nat. Mater. 2006, 5, 328–333.
[10] Zschieschang, U.; Ante, F.; Yamamoto, T.; Takimiya, K.; Kuwabara, H.; Ikeda, M.;Sekitani, T.; Someya, T.; Kern, K.; Klauk, H. Flexible Low-Voltage Organic Transistors and Circuits Based on A High-Mobility Organic Semiconductor with Good Air Stability. Adv. Mater. 2010, 22, 982–985.
[11] Qian, C.; Sun, J.; Kong, L.-a.; Fu, Y.; Chen, Y.; Wang, J.; Wang, S.; Xie, H.; Huang, H.; Yang, J.; Gao, Y. Multilevel Nonvolatile Organic Photomemory Based on Vanadyl-Phthalocyanine/Para-Sexiphenyl Heterojunctions. ACS Photonics 2017, 4, 2573-2579.
[12] Kösemen, Z.-A.; Kösemen, A.; Öztürk, S.; Canımkurbey, B.; Erkovan, M.; Yerli, Y. Performance Improvement in Photosensitive Organic Field Effect Transistor by Using Multi-Layer Structure. Thin Solid Films 2019, 672, 90-99.
[13] Pandey, A.-K.; Aljada, M.; Pivrikas, A.; Velusamy, M.; Burn, P.-L.; Meredith, P.; Namdas, E.-B. Dynamics of Charge Generation and Transport in Polymer-Fullerene Blends Elucidated Using a PhotoFET Architecture. ACS Photonics 2014, 1, 114-120.
[14] Hwang, H.; Kim, H.; Nam, S.; Bradley, D.-D.-C.; Ha, C.-S.; Kim, Y. Organic Phototransistors with Nanoscale Phase-Separated Polymer/Polymer Bulk Heterojunction Layers. Nanoscale 2011, 3, 2275-2279.
[15] Nam, S.; Seo, J.; Park, S.; Lee, S.; Jeong, J.; Lee, H.; Kim, H.; Kim, Y. Hybrid Phototransistors Based on Bulk Heterojunction Films of Poly(3-hexylthiophene) and Zinc Oxide Nanoparticle. ACS Appl. Mater. Interfaces 2013, 5, 1385-1392.
[16] Rim, Y.-S.; Ok, K.-C.; Yang, Y.-M.; Chen, H.; Bae, S.-H.; Wang, C.; Huang, Y.; Park, J.-S.; Yang, Y. Boosting Responsivity of Organic−Metal Oxynitride Hybrid Heterointerface Phototransistor. ACS Appl. Mater. Interfaces 2016, 8, 14665-14670.
[17] Li, M.; Nykypanchuk, D.; Cotlet, M. Improving the Responsivity of Hybrid Graphene−Conductive Polymer Photodetectors via Nanowire Self-Assembly. ACS Photonics 2018, 5, 4296-4302.
[18] Liu, Y.; Yang, Y.; Shi, D.; Xiao, M.; Jiang, L.; Tian, J.; Zhang, G.; Liu, Z.; Zhang, X.; Zhang, D. Photo-/Thermal-Responsive Field-Effect Transistor upon Blending Polymeric Semiconductor with Hexaarylbiimidazole toward Photonically Programmable and Thermally Erasable Memory Device. Adv. Mater. 2019, 31, 1902576.
[19] Stingelin-Stutzmann, N.; Smits, E.; Wondergem, H.; Tanase, C.; Blom, P.; Smith, P.; de Leeuw, D. Organic Thin-Film Electronics from Vitreous Solution-Processed Rubrene Hypereutectics. Nat. Mater. 2005, 4, 601.
[20] Tang, W.; Feng, L.; Yu, P.; Zhao, J.; Guo, X. A Lewis-Acid Monopolar Gate Dielectric for All-Inkjet-Printed Highly Bias-Stress Stable Organic Transistors. Adv. Electron. Mater. 2016, 2, 1500454.
[21] Hwang, D.-K.; Fuentes-Hernandez, C.; Berrigan, J.-D.; Fang, Y.; Kim, J.; Potscavage, W.-J.; Cheun, H.; Sandhage, K.-H.; Kippelen, B. Solvent and Polymer matrix Effects on TIPS-Pentacene/Polymer Blend Organic Field-Effect Transistors. J. Mater. Chem. 2012, 22, 5531.
[22] Cho, S.-Y.; Ko, J.-M.; Lim, J.; Lee, J.-Y.; Lee, C. Inkjet-Printed Organic Thin Film Transistors Based on TIPS Pentacene with Insulating Polymers. J. Mater. Chem. C 2013, 1, 914-923.
[23] Sirringhaus, H.; Brown, P.-J.; Friend, R.-H.; Nielsen, M.-M.; Bechgaard, K.; Langeveld-Voss, B.-M.-W.; Spiering, A.-J.-H.; Janssen, R.-A.-J.; Meijer, E.-W.; Herwig, P.; de Leeuw, D.-M. Two-Dimensional Charge Transport in Self-Organized, High-Mobility Conjugated Polymers. Nature 1999, 401, 685.
[24] Arias, A.-C.; Endicott, F.; Street, R.-A. Surface‐Induced Self‐Encapsulation of Polymer Thin‐Film Transistors. Adv. Mater. 2006, 18, 2900-2904.
[25] Goffri, S.; Müller, C.; Stingelin-Stutzmann, N.; Breiby, D.-W.; Radano, C.-P.; Andreasen, J.-W.; Thompson, R. Janssen, R.-A.-J.; Nielsen, M.-M.; Smith, P.; Sirringhaus, H. Multicomponent Semiconducting Polymer Systems with Low Crystallization-Induced Percolation Threshold. Nat. Mater. 2006, 5, 950-956.
[26] Wang, X.-X.; Lee, W.-H.; Zhang, G.; Wang, X.-X.; Kang, B.; Lu, H.; Qiu, L.; Cho, K. Self-Stratified Semiconductor/Dielectric Polymer Blends: Vertical Phase Separation for Facile Fabrication of Organic Transistors. J. Mater. Chem. C 2013, 1, 3989-3998.
[27] Lei, Y.; Deng, P.; Lin, M.; Zheng, X.; Zhu, F.; Ong, B.-S. Enhancing Crystalline Structural Orders of Polymer Semiconductors for Efficient Charge Transport via Polymer-Matrix-Mediated Molecular Self-Assembly. Adv. Mater. 2016, 28, 6687.
[28] Cho, C.; Kuo, S.-C.-C.; Chang, Y.-C.-S. Morphology and Optoelectronic Characteristics of Organic Field-Effect Transistors Based on Blends of Polylactic Acid and Poly(3-hexylthiophene). Polym. J. 2018, 50, 975-987.
[29] Qiu, L.; Xu, Q.; Lee, W.-H.; Wang, X.; Kang, B.; Lv, G.; Cho, K. Organic Thin-Film Transistors with A Photo-Patternable Semiconducting Polymer Blend. J. Mater. Chem. 2011, 21, 15637-15642.
[30] Campos, A.; Zhang, Q.; Ajayakumar, M. R.; Leonardi, F.; Mas-Torrent, M. High Performance Organic Field-Effect Transistor with A Solid and Aqueous Dielectric Based on A Solution Sheared Sulfur-Bridged Annulene Derivative. Adv. Electron. Mater. 2017, 4, 1700349.
[31] Ljubic, D.; Smithson, C.-S.; Wu, Y.; Zhu, S. Effect of Polymer Binders on UV-Responsive Organic Thin-Film Phototransistors with Benzothienobenzothiophene Semiconductor. ACS Appl. Mater. Interfaces 2016, 8, 3744-3754.
[32] Haase, K.; Teixeira da Rocha, C.; Hauenstein, C.; Zheng, Y.; Hambsch, M.; Mannsfeld, S.-C.-B. High‐Mobility, Solution‐Processed Organic Field‐Effect Transistors from C8‐BTBT:Polystyrene Blends. Adv. Electron. Mater. 2018, 4, 1800076.
[33] Hamaguchi, A.; Negishi, T.; Kimura, Y.; Ikeda, Y.; Takimiya, K.; Bisri, S.-Z.; Iwasa, Y.; Shiro, T. Single-Crystal-Like Organic Thin-Film Transistors Fabricated from Dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) Precursor-Polystyrene Blends. Adv. Mater. 2015, 27, 6606.
[34] Soeda, J.; Okamoto, T.; Mitsui, C.; Takeya, J. Stable Growth of Large-Area Single Crystalline Thin Films from An Organic Semiconductor/Polymer Blend Solution for High-Mobility Organic Field-Effect Transistors. Org. Electron. 2016, 39, 127-132.
[35] Temiño, I.; del Pozo, F.-G.; Ajayakumar, M.-R.; Galindo, S.; Puigdollers, J.; Mas-Torrent, M.-A. Rapid, Low‐Cost, and Scalable Technique for Printing State‐of‐the‐Art Organic Field‐Effect Transistors. Adv. Mater. Technol. 2016, 1, 1600090.
[36] Teixeira da Rocha, C.; Haase, K.; Zheng, Y.; Löffler, M.; Hambsch, M.; Mannsfeld, S.-C.-B. Solution Coating of Small Molecule/Polymer Blends Enabling Ultralow Voltage and High‐Mobility Organic Transistors. Adv. Electron. Mater. 2018, 4, 1800141.
[37] Lee, W.-H.; Lim, J.-A.; Kwak, D.; Cho, J.-H.; Lee, H.-S.; Choi, H.-H.; Cho, K. Semiconductor-Dielectric Blends: A Facile All Solution Route to Flexible All-Organic Transistors. Adv. Mater. 2009, 21, 4243-4248.
[38] Bu, L.; Hu, M.; Lu, W.; Wang, Z.; Lu, G. Printing Semiconductor–Insulator Polymer Bilayers for High‐Performance Coplanar Field‐Effect Transistors. Adv. Mater. 2018, 30, 1704695.
[39] Zhang, G.; Yang, H.; He, L.; Hu, L.; Lan, S.; Li, F.; Chen, H.; Guo, T. Importance of Domain Purity in Semi‐Conducting Polymer/Insulating Polymer Blends Transistors. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1760-1766.
[40] Ford, M.-J.; Wang, M.; Patel, S.-N.; Phan, H.; Segalman, R.-A.; Nguyen, T.-Q.; Bazan, G.-C. High Mobility Organic Field-Effect Transistors from Majority Insulator Blends. Chem. Mater. 2016, 28, 1256-1260.
[41] Kwak, D.; Choi, H.-H.; Kang, B.; Kim, D.-H.; Lee, W.-H.; Cho, K. Tailoring Morphology and Structure of Inkjet‐Printed Liquid‐Crystalline Semiconductor/Insulating Polymer Blends for High‐Stability Organic Transistors. Adv. Funct. Mater. 2016, 26, 3003-3011.
[42] Arias, A.-C.; Endicott, F.; Street, R.-A. Surface‐Induced Self‐Encapsulation of Polymer Thin‐Film Transistors. Adv. Mater. 2006, 18, 2900-2904.
[43] Klauk, H., Eds. Organic Electronics II, Wiley-VCH, Germany, 2012.
[44] Guerin, M.; Daami, A.; Jacob, S.; Bergeret, E.; Benevent, E.; Pannier, P.; Coppard., R. “High Gain Fully Printed Organic Complementary Circuits on Flexible Plastic Foils”, IEEE Trans. Electron Devices. 2011, 58, 3587-3593.
[45] Kalyani, N.-T.; Swart, H.; Dhoble, S.-J., Eds. Principles and Applications of Organic Light Emitting Diodes (OLEDs), Woodhead Publishing, United Kingdom, 2017.
[46] Strobel, N.; Seiberlich, M.; Eckstein, R.; Lemmer, U.; Sosa, G.-H. Organic Photodiodes: Printing, Coating, Benchmarks, and Applications. Flex. Print. Electron. 2019, 4, 043001.
[47] Inganäs, O. Organic Photovoltaics over Three Decades. Adv. Mater. 2018, 30, 1800388.
[48] Miller, A.; Abrahams, E. Impurity Conduction at Low Concentration. Phys. Rev. 1960, 120, 745-755.
[49] Vissenberg, M.-C.-J.-M.; Matters, M. Theory of The Field Effect Mobility in Amorphous Organic Transistors. Phys. Rev. B. 1998, 57, 964-967.
[50] Shur, M.; Hack, M. Physics of Amorphous Silicon Based Alloy Field Effect Transistor. J. Appl. Phys. 1984, 55, 3831-3842.
[51] Horowitz, G. Organic Field-Effect Transistor. Adv. Mater. 1998, 10, 365-377.
[52] Geacintov, N.; Pope, M. Generation of Charge Carriers in Anthracene with Polarized Light. J. Chem. Phys. 1967, 47, 1194.
[53] Arkhipov, V.-I.; Emelianova, E.-V.; Bässler, H. Hot Exciton Dissociation in A Conjugated Polymer. Phys. Rev. Lett. 1999, 82, 1321.
[1] Ge, F.; Liu, Z.; Lee, S.-B.; Wang, X.; Zhang, G.; Lu, H.; Cho, K.; Qiu, L. Bar-Coated Ultrathin Semiconductors from Polymer Blend for One-Step Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2018, 10, 21510-21517.
[2] Chung, M.-T.; Tasy, Z.-E.; Chi, M.-H.; Wang, Y.-W. Effect of Blending Polymer Insulators on The Improvement of The Performance of Poly(3-hexylthiophene) Transistors. Thin Solid Films 2017, 638, 441-447.
[3] Zhang, L.; Yang, D.; Wang, Y.; Wang, H.; Song, T.; Fu, C.; Yang, S.; Wei, J.; Liu, R.; Zou, B. Performance Enhancement of FET-Based Photodetector by Blending P3HT with PMMA. IEEE Photon. Technol. Lett. 2015, 27, 1535-1538.
[4] Wang, X.; Lee, W.-H.; Zhang, G.; Wang, X.; Kang, B.; Lu, H.; Qiu, L.; Cho, K. Self-Stratified Semiconductor/Dielectric Polymer Blends: Vertical Phase Separation for Facile Fabrication of Organic Transistors. J. Mater. Chem. C 2013, 1, 3989-3998.
[5] Lin, J.-C.; Lee, W.-Y.; Wu, H.-C.; Chou, C.-C.; Chiu, Y.-C.; Sun, Y.-S.; Chen, W.-C. Morphology and Field-Effect Transistor Characteristics of Semicrystalline Poly(3-hexylthiophene) and Poly(stearyl acrylate) Blend Anowires. J. Mater. Chem. 2012, 22, 14682-14690.
[6] Kergoat, L.; Battaglini, N.; Miozzo, L.; Piro, B.; Pham, M.-C.; Yassar, A.; Horowitz, G. Use of Poly(3-hexylthiophene)/Poly(methyl methacrylate) (P3HT/PMMA) Blends to Improve The Performance of Water-Gated Organic Field-Effect Transistors. Org. Electron. 2011, 12, 1253-1257.
[7] Wu, F.-C.; Li, Y.-H.; Tsou, C.-J.; Tung, K.-C.; Yen, C.-T.; Chou, F.-S.; Tang, F.-C.; Chou, W.-Y.; Ruan, J.; Cheng, H.-L. Synergistic Effects of Binary-Solvent Annealing for Efficient Polymer-Fullerene Bulk Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 18967-18976.
[8] Cheng, H.-L.; Lin, J.-W.; Ruan, J.; Lin, C.-H.; Wu, F.-C.; Chou, W.-Y.; Chen, C.-H.; Chang, C.-K.; Sheu, H.-S. Spontaneous Formation of An Ideal-Like Field-Effect Channel for Decay-Free Polymeric Thin-Film Transistors by Multiple-Scale Phase Separation. ACS Appl. Mater. Interfaces 2015, 7, 16486-16494.
[9] Cheng, H.-L.; Lin, J.-W.; Jang, M.-F.; Wu, F.-C.; Chou, W.-Y.; Chang, M.-H.; Chao, C.-H. Long-Term Operations of Polymeric Thin-Film Transistors: Electric Field-Induced Intrachain Order and Charge Transport Enhancements of Conjugated Poly(3-hexylthiophene). Macromolecules 2009, 42, 8251-8259.
[10] Wu, F.-C.; Cheng, H.-L.; Chen, Y.-T.; Jang, M.-F.; Chou, W.-Y. Polymer Bilayer Films with Semi-Interpenetrating Semiconducting/Insulating Microstructure for Field-Effect Transistor Applications. Soft Matter 2011, 7, 11103-11110.
[11] Clark, J.; Silva, C.; Friend, R.-H.; Spano, F.-C. Role of Intermolecular Coupling in The Photophysics of Disordered Organic Semiconductors: Aggregate Emission in Regioregular Polythiophene. Phys. Rev. Lett. 2007, 98, 206406.
[12] Spano, F.-C. Modeling Disorder in Polymer Aggregates: The Optical Spectroscopy of Regioregular Poly(3-hexylthiophene) Thin Films. J. Chem. Phys. 2005, 122, 234701.
[13] Brown, P.-J.; Thomas, D.-S.; Köhle, A. Effect of Interchain Interactions on The Absorption and Emission of Poly(3-hexylthiophene). Phys. Rev. B 2003, 67, 064203.
[14] Vohra, V.; Notoya, O.; Huang, T.; Yamaguchi, M.; Murata, H. Nanostructured Poly(3‐hexylthiophene‐2,5‐diyl) Films with Tunable Dimensions through Self‐Assembly with Polystyrene. Polymer 2014, 55, 2213-2219.
[15] Vohra, V.; Galeotti, F.; Giovanella, U.; Anzai, T.; Kozma, E.; Botta, C. Investigating Phase Separation and Structural Coloration of Self‐Assembled Ternary Polymer Thin Films. Appl. Phys. Lett. 2016, 109, 103702.
[1] Klauk, H. Eds., Organic Electronics II, Wiley-VCH, Germany, 2012.
[2] Bernards, D.-A.; Owens, R.-M.; Malliaras, G.-G. Eds., Organic Semiconductors in Sensor Applications, Springer, New York, 2008.
[3] Magliulo, M.; Mulla, M.-Y.; Singh, M.; Macchia, E.; Tiwari, A.; Torsi, L.; Manoli, K. Printable and Flexible Electronics: from TFTs to Bioelectronic devices. J. Mater. Chem. C 2015, 3, 12347.
[4] Choi, S.; Jeong, J.-W.; Jo, G.; Ma, B.-C.; Chang, M. Conjugated Polymer/Paraffin Blends for Organic Field-Effect Transistors with High Environmental Stability. Nanoscale 2019, 11, 10004-10016.
[5] Onwubiko, A.; Yue, W.; Jellett, C.; Xiao, M.; Chen, H.-Y.; Ravva, M.-K.; Hanifi, D.-A.; Knall, A.-C.; Purushothaman, B.; Nikolka, M.; Flores, J.-C.; Salleo, A.; Bredas, J.-L.; Sirringhaus, H.; Hayoz, P.; McCulloch, I. Fused Electron Deficient Semiconducting Polymers for Air Stable Electron Transport. Nat. Commun. 2018, 9, 416.
[6] Brixi, S.; Melville, O.-A.; Boileau, N.-T.; Lessard, B.-H. The Influence of Air and Temperature on The Performance of PBDB-T and P3HT in Organic Thin Film Transistors. J. Mater. Chem. C 2018, 6, 11972-11979.
[7] Kyaw, A.-K.-K.; Jamalullah, F.; Vaithieswari, L.; Tan, M.-J.; Zhang, L.; Zhang, J. Thermally Stable and Sterilizable Polymer Transistors for Reusable Medical Devices. ACS Appl. Mater. Interfaces 2016, 8, 9533-9539.
[8] He, Z.; Shaik, S.; Bi, S.; Chen, J.; Li, D. Air-Stable Solution-Processed N-Channel Organic Thin Film Transistors with Polymer-Enhanced Morphology. Appl. Phys. Lett. 2015, 106, 183301.
[9] Schmoltner, K.; Schlutter, F.; Kivala, M.; Baumgarten, M.; Winkler, S.; Trattnig, R.; Koch, N.; Klug, A.; List, E.-J.-W.; Mullen, K. A Heterotriangulene Polymer for Air-Stable Organic Field-Effect Transistors. Polym. Chem. 2013, 4, 5337-5344.
[10] Guo, X.; Ortiz, R.-P.; Zheng, Y.; Hu, Y.; Noh, Y.-Y.; Baeg, K.-J.; Facchetti, A.; Marks, T.-J. Bithiophene-Imide-Based Polymeric Semiconductors for Field-Effect Transistors: Synthesis, Structure Property Correlations, Charge Carrier Polarity, and Device Stability. J. Am. Chem. Soc. 2011, 133, 1405-1418.
[11] Ong, K.-H.; Lim, S.-L.; Tan, H.-S.; Wong, H.-K.; Li, J.; Ma, Z.; Moh, L.-C.-H.; Lim, S.-H.; de Mello, J.-C.; Chen, Z.-K. A Versatile Low Bandgap Polymer for Air-Stable, High-Mobility Field-Effect Transistors and Efficient Polymer Solar Cells. Adv. Mater. 2011, 23, 1409-1413.
[12] Nikolka, M.; Nasrallah, I.; Rose, B.; Ravva, M.-K.; Broch, K.; Sadhanala, A.; Harkin, D.; Charmet, J.; Hurhangee, M.; Brown, A.; Illig, S.; Too, P.; Jongman, J.; McCulloch, I.; Bredas, J.-L.; Sirringhaus, H. High Operational and Environmental Stability of High-mobility Conjugated Polymer Field-Effect Transistors through The Use of Molecular Additives. Nat. Mater. 2017, 16, 356-362.
[13] Bebiche, S.; Cisneros-Perez, P.-A.; Mohammed-Brahim, T.; Harnois, M.; Rault-Berthelot, J.; Poriel, C.; Jacques, E. Influence of The Gate Bias Stress on The Stability of N-Type Organic Field-Effect Transistors Based on Dicyanovinylene–Dihydroindenofluorene Semiconductors. Mater. Chem. Front. 2018, 2, 1631.
[14] Sirringhaus, H. Reliability of Organic Field-Effect Transistors. Adv. Mater. 2009, 21, 3859-3873.
[15] Cheng, H.-L.; Lin, J.-W.; Jang, M.-F.; Wu, F.-C.; Chou, W.-Y.; Chang, M.-H.; Chao, C.-H. Long-Term Operations of Polymeric Thin-Film Transistors: Electric- Field-Induced Intrachain Order and Charge Transport Enhancements of Conjugated Poly(3-hexylthiophene). Macromolecules 2009, 42, 8251-8259.
[16] Gomes, H.-L.; Stallinga, P.; Colle, M.; de Leeuw, D.-M.; Biscarini, F. Electrical Instabilities in Organic Semiconductors Caused by Trapped Supercooled Water. Appl. Phys. Lett. 2006, 88, 082101.
[17] Hoshino, S.; Yoshida, M.; Uemura, S.; Kodzasa, T.; Takada, N.; Kamata, T.; Yase, K. Influence of Moisture on Device Characteristics of Polythiophene-Based Field-Effect Transistors. J. Appl. Phys. 2004, 95, 5088-5093.
[18] Troughton, J.; Atkinson, D. Amorphous InGaZnO and Metal Oxide Semiconductor Devices: An Overview and Current Status. J. Mater. Chem. C 2019, 7, 12388.
[19] Someya, T.; Dodabalapur, A.; Huang, J.; See, K.-C.; Katz, H.-E. Chemical and Physical Sensing by Organic Field-Effect Transistors and Related Devices. Adv. Mater. 2010, 22, 3799-3811.
[20] Han, S.; Zhuang, X.; Shi, W.; Yang, X.; Li, L.; Yu, J. Poly(3-hexylthiophene)/Polystyrene (P3HT/PS) Blends Based Organic Field-Effect Transistor Ammonia Gas Sensor. Sens. Actuator B-Chem. 2016, 225, 10-15.
[21] Li, H.; Dailey, J.; Kale, T.; Besar, K.; Koehler, K.; Katz, H.-E. Sensitive and Selective NO2 Sensing Based on Alkyl- and Alkylthio-Thiophene Polymer Conductance and Conductance Ratio Changes from Differential Chemical Doping. ACS Appl. Mater. Interfaces 2017, 9, 20501-20507.
[22] Manoli, K.; Dumitru, L.-M.; Mulla, M.-Y.; Magliulo, M.; Franco, C.-D.; Santacroce, M.-V.; Scamarcio, G.; Torsi, L. A Comparative Study of The Gas Sensing Behavior in P3HT- and PBTTT-Based OTFTs: The Influence of Film Morphology and Contact Electrode Position. Sensors 2014, 14, 16869-16880.
[23] Tai, H.; Li, X.; Jiang, Y.; Xie, G.; Du, X. The Enhanced Formaldehyde-Sensing Properties of P3HT-ZnO Hybrid Thin Film OTFT Sensor and Further Insight into Its Stability. Sensors 2015, 15, 2086-2103.
[24] Ge, F.; Liu, Z.; Lee, S.-B.; Wang, X.; Zhang, G.; Lu, H.; Cho, K.; Qiu, L. Bar-Coated Ultrathin Semiconductors from Polymer Blend for One-Step Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2018, 10, 21510-21517.
[25] Chung, M.-T.; Tasy, Z.-E.; Chi, M.-H.; Wang, Y.-W. Effect of Blending Polymer Insulators on The Improvement of The Performance of Poly(3-hexylthiophene) Transistors. Thin Solid Films 2017, 638, 441-447.
[26] Zhang, L.; Yang, D.; Wang, Y.; Wang, H.; Song, T.; Fu, C.; Yang, S.; Wei, J.; Liu, R.; Zou, B. Performance Enhancement of FET-Based Photodetector by Blending P3HT with PMMA. IEEE Photon. Technol. Lett. 2015, 27, 1535-1538.
[27] Wang, X.; Lee, W.-H.; Zhang, G.; Wang, X.; Kang, B.; Lu, H.; Qiu, L.; Cho, K. Self-Stratified Semiconductor/Dielectric Polymer Blends: Vertical Phase Separation for Facile Fabrication of Organic Transistors. J. Mater. Chem. C 2013, 1, 3989-3998.
[28] Lin, J.-C.; Lee, W.-Y.; Wu, H.-C.; Chou, C.-C.; Chiu, Y.-C.; Sun, Y.-S.; Chen, W.-C. Morphology and Field-Effect Transistor Characteristics of Semicrystalline Poly(3-hexylthiophene) and Poly(stearyl acrylate) Blend Nanowires. J. Mater. Chem. 2012, 22, 14682-14690.
[29] Kergoat, L.; Battaglini, N.; Miozzo, L.; Piro, B.; Pham, M.-C.; Yassar, A.; Horowitz, G. Use of Poly(3-hexylthiophene)/Poly(methyl methacrylate) (P3HT/PMMA) Blends to Improve The Performance of Water-Gated Organic Field-Effect Transistors. Org. Electron. 2011, 12, 1253-1257.
[30] Vohra, V.; Notoya, O.; Huang, T.; Yamaguchi, M.; Murata, H. Nanostructured Poly(3-hexylthiophene-2,5-diyl) Films with Tunable Dimensions through Self-Assembly with Polystyrene. Polymer 2014, 55, 2213.
[31] Vohra, V.; Galeotti, F.; Giovanella, U.; Anzai, T.; Kozma, E.; Botta, C. Investigating Phase Separation and Structural Coloration of Self-Assembled Ternary Polymer Thin Films. Appl. Phys. Lett. 2016, 109, 103702.
[32] Wu, F.-C.; Li, Y.-H.; Tsou, C.-J.; Tung, K.-C.; Yen, C.-T.; Chou, F.-S.; Tang, F.-C.; Chou, W.-Y.; Ruan, J.; Cheng, H.-L. Synergistic Effects of Binary-Solvent Annealing for Efficient Polymer-Fullerene Bulk Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 18967-18976.
[33] Yanai, T.; Tew, D.-P.; Handy, N.-C. A New Hybrid Exchange-Correlation Functional Using The Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51-57.
[34] Cheng, H.-L.; Lin, J.-W.; Ruan, J.; Lin, C.-H.; Wu, F.-C.; Chou, W.-Y.; Chen, C.-H.; Chang, C.-K.; Sheu, H.-S. Spontaneous Formation of An Ideal-Like Field-Effect Channel for Decay-Free Polymeric Thin-Film Transistors by Multiple-Scale Phase Separation. ACS Appl. Mater. Interfaces 2015, 7, 16486-16494.
[35] Chou, W.-Y.; Ho, T.-Y.; Cheng, H.-L.; Tang, F.-C.; Chen, J.-H.; Wang, Y.-W. Gate Field Induced Ordered Electric Dipoles in a Polymer Dielectric for Low-Voltage Operating Organic Thin-Film Transistors. RSC Adv. 2013, 3, 20267-20272.
[36] Lin, Y.-S.; Yeh, B.-L.; Tasi, M.-R.; Cheng, H.-L.; Liu, S.-J.; Tang, F.-C.; Chou, W.-Y. Initial Time-Dependent Current Growth Phenomenon in N-Type Organic Transistors Induced by Interfacial Dipole Effects. J. Appl. Phys. 2015, 117, 104507.
[37] Street, R.-A.; Chabinyc, M.-L.; Endicott, F.; Ong, B. Extended Time Bias Stress Effects in Polymer Transistors. J. Appl. Phys. 2006, 100, 114518.
[38] Mathijssen, S.-G.-J.; Colle, M.; Gomes, H.; Smits, E.-C.-P.; de Boer, B.; McCulloch, I.; Bobbert, P.-A.; de Leeuw, D.-M. Dynamics of Threshold Voltage Shifts in Organic and Amorphous Silicon Field-Effect Transistors. Adv. Mater. 2007, 19, 2785-2789.
[39] Clark, J.; Silva, C.; Friend, R.-H.; Spano, F.-C. Role of Intermolecular Coupling in The Photophysics of Disordered Organic Semiconductors: Aggregate Emission in Regioregular Polythiophene. Phys. Rev. Lett. 2007, 98, 206406.
[40] Spano, F.-C. Modeling Disorder in Polymer Aggregates: The Optical Spectroscopy of Regioregular Poly(3-hexylthiophene) Thin Films. J. Chem. Phys. 2005, 122, 234701.
[41] Volonakis, G.; Tsetseris, L.; Logothetidis, S. Impurity-Related Effects in Poly(3-hexylthiophene) Crystals. Phys. Chem. Chem. Phys. 2014, 16, 25557-25563.
[42] Li, B.; Lambeth, D.-N. Chemical Sensing Using Nanostructured Polythiophene Transistors. Nano Lett. 2008, 8, 3563-3567.
[43] Our preliminary experimental results show that the quasi-stability feature can also be achieved using another important polymeric semiconductor, i.e., poly(2,5-bis(3-tetradecylthiophen-2yl)thieno(3,2-b)thiophene) (so-called PBTTT), these findings are interesting and further research is in progress.
[1] Klauk, H., Eds. Organic Electronics II, Wiley-VCH, Germany, 2012.
[2] Kang, M.; Khim, D; Kim, J.; Lee, H. J.; Jo, J. Y.; Baeg, K.-J.; Kim, D.-Y. Tuning Non-Volatile Memory Characteristics via Molecular Doping of Polymer Semiconductors Based on Ambipolar Organic Field-Effect Transistors. Org. Electron. 2018, 58, 12-17.
[3] Wang, Y.-F.; Tsai, M.-R.; Lin, Y.-S.; Wu, F.-C.; Lin, C.-Y.; Cheng, H.-L.; Liu, S.-J.; Tang, F.-C.; Chou, W.-Y. High-Response Organic Thin-Film Memory Transistors Based on Dipole-Functional Polymer Electret Layers. Org. Electron. 2015, 26, 359-364.
[4] Li, M.; Nykypanchuk, D.; Cotlet, M. Improving the Responsivity of Hybrid Graphene−Conductive Polymer Photodetectors via Nanowire Self-Assembly. ACS Photonics 2018, 5, 4296-4302.
[5] Han, S.; Zhuang, X.; Shi, W.; Yang, X.; Li, L.; Yu, J. Poly(3-hexylthiophene)/Polystyrene (P3HT/PS) Blends Based Organic Field-Effect Transistor Ammonia Gas Sensor. Sens. Actuators B Chem. 2016, 225, 10-15.
[6] Magliulo, M.; Mulla, M.-Y.; Singh, M.; Macchia, E.; Tiwari, A.; Torsi, L.; Manoli, K. Printable and Flexible Electronics: from TFTs to Bioelectronic Devices. J. Mater. Chem. C 2015, 3, 12347-12363.
[7] Kaushik, B.-K.; Kumar, B.; Prajapati, S.; Mittal, P., Eds. Organic Thin-Film Transistor Applications: Materials to Circuits, CRC Press, Taylor & Francis, Boca Raton, FL, 2017.
[8] Cheng, H.-L.; Lin, J.-W.; Ruan, J.; Lin, C.-H.; Wu, F.-C.; Chou, W.-Y.; Chen, C.-H.; Chang, C.-K.; Sheu, H.-S. Spontaneous Formation of An Ideal-Like Field-Effect Channel for Decay-Free Polymeric Thin-Film Transistors by Multiple-Scale Phase Separation. ACS Appl. Mater. Interfaces 2015, 7, 16486-16494.
[9] Cheng, H.-L.; Lin, J.-W.; Jang, M.-F.; Wu, F.-C.; Chou, W.-Y.; Chang, M.-H.; Chao, C.-H. Long-Term Operations of Polymeric Thin-Film Transistors: Electric-Field-Induced Intrachain Order and Charge Transport Enhancements of Conjugated Poly(3-hexylthiophene). Macromolecules 2009, 42, 8251-8259.
[10] Street, R.-A.; Chabinyc, M.-L.; Endicott, F.; Ong, B. Extended Time Bias Stress Effects in Polymer Transistors. J. Appl. Phys. 2006, 100, 114518.
[11] Iba, S.; Sekitani, T.; Kato, Y.; Someya, T.; Kawaguchi, H.; Takamiya, M.; Sakurai, T.; Takagi, S. Control of Threshold Voltage of Organic Field-Effect Transistors with Double-Gate Structures. Appl. Phys. Lett. 2005, 87, 023509.
[12] Spijkman, M.-J.; Myny, K.; Smits, E.-C.-P.; Heremans, P.; Blom, P.-W.-M.; de Leeuw, D.-M. Dual-Gate Thin-Film Transistors, Integrated Circuits and Sensors. Adv. Mater. 2011, 23, 3231-3242.
[13] Maddalena, F.; Spijkman, M.; Brondijk, J.-J.; Fonteijn, P.; Brouwer, F.; Hummelen, J.-C.; de Leeuw, D.-M.; Blom, P.-W.-M.; de Boer, B. Device Characteristics of Polymer Dual-Gate Field-Effect Transistors. Org. Electron. 2008, 9, 839-846.
[14] Koo, J.-B.; Ku, C.-H.; Lim, J.-W.; Kim, S.-H. Novel Organic Inverters with Dual-Gate Pentacene Thin-Film Transistor. Org. Electron. 2007, 8, 552-558.
[15] Myny, K.; Beenhakkers, M.-J.; van Aerle, N.-A.-J.-M.; Gelinck, G.-H.; Genoe, J.; Dehaene, W.; Heremans, P. Unipolar Organic Transistor Circuits Made Robust by Dual-Gate Technology. IEEE J. Solid-State Circuits 2011, 46, 1223-1230.
[16] Kwon, J.; Jung, S.; Kim, Y.-H.; Jung, S. Bistaggered Contact Geometry for Symmetric Dual-Gate Organic TFTs. IEEE Trans. Electron Devices 2019, 66, 3118-3123.
[17] Katsouras, I.; Zhao, D.; Spijkman, M.-J.; Li, M.; Blom, P.-W.-M.; de Leeuw, D.-M.; Asadi, K. Controlling The On/Off Current Ratio of Ferroelectric Field-Effect Transistors. Sci. Rep. 2015, 5, 12094.
[18] Han, J.; Sun, L.; Xu, H.; Zhang, Y.; Zhang, S.; Wang, Y. Impact of Gate Coupling and Misalignment on Performance of Double-Gate Organic Thin Film Transistors. Jpn. J. Appl. Phys. 2015, 54, 04DK04.
[19] Ha, T.-J.; Sonar, P.; Singh, S.-P.; Dodabalapur, A. Characteristics of High-Performance Ambipolar Organic Field-Effect Transistors Based on a Diketopyrrolopyrrole-Benzothiadiazole Copolymer. IEEE Trans. Electron Devices 2012, 59, 1494-1500.
[20] Takamiya, M.; Sekitani, T.; Kato, Y.; Kawaguchi, H.; Someya, T.; Sakurai, T. An Organic FET SRAM with Back Gate to Increase Static Noise Margin and Its Application to Braille Sheet Display. IEEE J. Solid-State Circuits 2007, 42, 93-100.
[21] Zhang, Y.; Li, J.; Li, R.; Sbircea, D.-T.; Giovannitti, A.; Xu, J.; Xu, H.; Zhou, G.; Bian, L.; McCulloch, I.; Zhao, N. Liquid-Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing. ACS Appl. Mater. Interfaces 2017, 9, 38687-38694.
[22] Tsuji, Y.; Sakai, H.; Feng, L.; Guo, X.; Murata, H. Dual-Gate Low-Voltage Organic Transistor for Pressure Sensing. Appl. Phys. Express 2017, 10, 021601.
[23] Kwon, J.; Takeda, Y.; Shiwaku, R.; Tokito, S.; Cho, K.; Jung, S. Three-Dimensional Monolithic Integration in Flexible Printed Organic Transistors. Nat. Commun. 2019, 10, 54.
[24] Park, S.; Lim, B.-T.; Kim, B.-S.; Son, H.-J.; Chung, D.-S. High Mobility Polymer Based on a π-Extended Benzodithiophene and Its Application for Fast Switching Transistor and High Gain Photoconductor. Sci. Rep. 2014, 4, 5482.
[25] Paterson, A.-F.; Singh, S.; Fallon, K.-J.; Hodsden, T.; Han, Y.; Schroeder, B.-C.; Bronstein, H.; Heeney, M.; McCulloch, I.; Anthopoulos, T.-D. Recent Progress in High Mobility Organic Transistors: A Reality Check. Adv. Mater. 2018, 30, 1801079.
[26] Tripathi, A.-K.; Smits, E.-C.-P.; Loth, M.; Anthony, J.-E.; Gelinck, G.-H. Charge Transport in Solution Processable Polycrystalline Dual-Gate Organic Field Effect Transistors. Appl. Phys. Lett. 2011, 98, 202106.
[27] Melzer, K.; Brandlein, M.; Popescu, B.; Popescu, D.; Lugli, P.; Scarpa, G. Characterization and Simulation of Electrolyte-Gated Organic Field-Effect Transistors. Faraday Discuss. 2014, 174, 399-411.
[28] Chung, M.-T.; Tsay, Z.-E.; Chi, M.-H.; Wang, Y.-W. Effect of Blending Polymer Insulators on The Improvement of The Performance of Poly(3-hexylthiophene) Transistors. Thin Solid Films 2017, 638, 441-447.
[29] Qiu, L.; Lim, J.-A.; Wang, X.; Lee, W.-H.; Hwang, M.; Cho, K. Versatile Use of Vertical-Phase-Separation-Induced Bilayer Structures in Organic Thin-Film Transistors. Adv. Mater. 2008, 20, 1141-1145.
[30] Lin B.-R.; Cheng H.-L.; Lin H.-H.; Wu F.-C.; Lin J.-H.; Chou W.-Y.; Ruan J.; Wang Y.-W. Electrical Stability Study of Polymer-Based Organic Transistors in Ambient Air Using An Active Semiconducting/Insulating Polyblend-Based Pseudo-Bilayer. Mater. Chem. Front. 2020, 4, 1679-1688.
[31] Kergoat, L.; Battaglini, N.; Miozzo, L.; Piro, B.; Pham, M.-C.; Yassar, A.; Horowitz, G. Use of Poly(3-hexylthiophene)/Poly(methyl methacrylate) (P3HT/PMMA) Blends to Improve The Performance of Water-Gated Organic Field-Effect Transistors. Org. Electron. 2011, 12, 1253-1257.
[32] Zhang, L.; Yang, D.; Wang, Y.; Wang, H.; Song, T.; Fu, C.; Yang, S.; Wei, J.; Liu, R.; Zou, B. Performance Enhancement of FET-Based Photodetector by Blending P3HT with PMMA. IEEE Photon. Technol. Lett. 2015, 27, 1535-1538.
[33] Sasaki, H.; Bala, P.-K.; Yoshida, H.; Ito, E. Miscibility of PVDF/PMMA Blends Examined by Crystallization Dynamics. Polymer 1995, 36, 4805-4810.
[34] Wang, Y.-W.; Tseng, G.-Y.; Chiu, L.-Y.; Lin, B.-R.; Lin, Y.-Y.; Haung, T.-W.; Chou, W.-Y.; Horng, L.; Cheng, H.-L. Highly Energy-Efficient and Air-Stable Organic Transistors by an Ultrathin Hybrid Dielectric with Large Internal Voltage Generation. J. Mater. Chem. C 2014, 2, 7752-7760.
[35] Cheng, H.-L.; Lin, W.-Q.; Wu, F.-C. Effects of Solvents and Vacancies on The Electrical Hysteresis Characteristics in Regioregular Poly(3-hexylthiophene) Organic Thin-Film Transistors. Appl. Phys. Lett. 2009, 94, 223302.
[36] Lo, P.-Y.; Li, P.-W.; Pei, Z.-W.; Hou, J.; Chan, Y.-J. Enhanced P3HT OTFT Transport Performance Using Double Gate Modulation Scheme. IEEE Electron Device Lett. 2009, 30, 629-631.
[37] Takenobu, T.; Watanabe, K.; Yomogida, Y.; Shimotani, H.; Iwasa, Y. Effect of Postannealing on The Performance of Pentacene Single-Crystal Ambipolar Transistors. Appl. Phys. Lett. 2008, 93, 073301.
[38] Chiu, L.-Y.; Cheng, H.-L.; Wang, H.-Y.; Chou, W.-Y.; Tang, F.-C. Manipulating The Ambipolar Characteristics of Pentacene-Based Field-Effect Transistors. J. Mater. Chem. C 2014, 2, 1823-1829.
[39] Takechi, K.; Nakata, M.; Azuma, K.; Yamaguchi, H.; Kaneko, S. Dual-Gate Characteristics of Amorphous InGaZnO4 Thin-Film Transistors as Compared to Those of Hydrogenated Amorphous Silicon Thin-Film Transistors. IEEE Trans. Electron Devices 2009, 56, 2027-2033.
[40] Kim, B.; Park, J.; Geier, M.-L.; Hersam, M.-C.; Dodabalapur, A. Voltage-Controlled Ring Oscillators Based on Inkjet Printed Carbon Nanotubes and Zinc Tin Oxide. ACS Appl. Mater. Interfaces 2015, 7, 12009-12014.
[41] CB and CG of SiO2 and PVDF/c-PVP bilayer dielectrics according to the C–V measurement is 11.1 and 4.24 nF/cm2, respectively. For simplicity, CS was calculated using the dielectric constant (ε introduced in the literature, which is 3.5 for P3HT42 and PMMA.9 The outcome indicates that kDB is insensitive to the d and ε of the active channel. For example, kDB demonstrates varying increments from 0.34 to 0.36 when d decreases from 100 to 40 nm and ε remains constant at 3.5 A similar increment can be observed when ε increases from 2.5 to 4.0 and d is constant at 60 nm.
[42] Böckmann M.; Schemme T.; de Jong D.-H.; Denz C.; Heuer A.; Doltsinis N.-L. Structure of P3HT Crystals, Thin Films, and Solutions by UV/Vis Spectral Analysis. Phys. Chem. Chem. Phys. 2015, 17, 28616-28625.
[43] Wu, F.-C.; Cheng, H.-L.; Chen, Y.-T.; Jang, M.-F.; Chou, W.-Y. Polymer Bilayer Films with Semi-Interpenetrating Semiconducting/Insulating Microstructure for Field-Effect Transistor Applications. Soft Matter 2011, 7, 11103-11110.
[44] Kundu, S.; Hashemnejad, S.-M.; Zabet, M.; Mishra, S. Self-Assembly and Mechanical Properties of A Triblock Copolymer Gel in A Mid-Block Selective Solvent. In Gels and Other Soft Amorphous Solids; Horkay, F.; Douglas, J.-F.; Gado, E.-D., Ed.; ACS Symposium Series, Washington 2018, Ch. 9.
[45] Qian, C.; Sun, J.; Kong, L.; Gou, G.; Yang, J.; He, J.; Gao, Y.; Wan, Q. Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors. ACS Appl. Mater. Interfaces 2016, 8, 26169-26175.
[46] Seo, D.-G.; Lee, Y.; Go, G.-T.; Pei, M.; Jung, S.; Jeong, Y.-H.; Lee, W.; Park, H.-L.; Kim, S.-W.; Yang, H.; Yang, C.; Lee, T.-W. Versatile Neuromorphic Electronics by Modulating Synaptic Decay of Single Organic Synaptic Transistor: from Artificial Neural Networks to Neuro-Prosthetics. Nano Energy 2019, 65, 104035.
[47] Chua, L.-L.; Friend, R.-H.; Ho, P.-K.-H. Organic Double-Gate Field-Effect Transistors: Logic-AND Operation. Appl. Phys. Lett. 2005, 87, 253512.
[1] Bernards, D.-A.; Owens, R.-M.; Malliaras, G.-G., Eds. Organic Semiconductors in Sensor Applications, Springer, New York, 2008.
[2] Lee, Y.-H.; Jang, M.; Lee, M.-Y.; Kweon, O.-Y.; Oh, J.-H. Flexible Field-Effect Transistor-Type Sensors Based on Conjugated Molecules. Chem 2017, 3, 724-763.
[3] Baeg, K.-J.; Binda, M.; Natali, D.; Caironi, M.; Noh Y.-Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv. Mater. 2013, 25, 4267–4295.
[4] Ren, X.; Yang, F.; Gao, X.; Cheng, S.; Zhang, X.; Dong, H.; Hu, W. Organic Field-Effect Transistor for Energy-Related Applications: Low-Power-Consumption Devices, Near-Infrared Phototransistors, and Organic Thermoelectric Devices. Adv. Energy Mater. 2018, 8, 1801003
[5] Kalyani, N. T.; Swart, H.; Dhoble, S. J., Eds. Principles and Applications of Organic Light Emitting Diodes (OLEDs), Woodhead Publishing, United Kingdom, 2017.
[6] Strobel, N.; Seiberlich, M.; Eckstein, R.; Lemmer, U.; Sosa, G. H. Organic Photodiodes: Printing, Coating, Benchmarks, and Applications. Flex. Print. Electron. 2019, 4, 043001.
[7] Inganäs, O. Organic Photovoltaics over Three Decades. Adv. Mater. 2018, 30, 1800388.
[8] Li, N.; Lan, Z.; Cai, L.; Zhu, F. Advances in Solution-Processable Near-Infrared Phototransistors. J. Mater. Chem. C 2019, 7, 3711-3729.
[9] Bharti, D.; Raghuwanshi, V.; Varun, I.; Mahato, A.-K.; Tiwari, S.-P. Photo-Response of Low Voltage Flexible TIPS-Pentacene Organic Field-Effect Transistors. IEEE Sens. J. 2017, 17, 3689-3697.
[10] Zou, T.; Wang, X.; Ju, H.; Wu, Q.; Guo, T.; Wu, W.; Wang, H. Crystal Structure Tuning in Organic Nanomaterials for Fast Response and High Sensitivity Visible-NIR Photo-Detector. J. Mater. Chem. C 2018, 6, 1495-1503.
[11] Wang, Q.; Zhu, M.; Wu, D.; Zhang, G.; Wang, X.; Lu, H.; Wang, X.; Qiu, L. Phototransistors Based on A Donor−Acceptor Conjugated Polymer with A High Response Speed. J. Mater. Chem. C 2015, 3, 10734-10741.
[12] Za'aba, N.-K.; Taylor, D.-M. Photo-Induced Effects in Organic Thin Film Transistors Based on Dinaphtho [2,3-b:2′,3′-f] Thieno[3,2-b′] Thiophene (DNTT). Org. Electron. 2019, 65, 39-48.
[13] Li, Y.; Lv, W.; Luo, X.; Sun, L.; Zhao, F.; Zhang, J.; Zhong, J.; Huang, F.; Peng, Y. Enhanced Performance of PbPc Photosensitive Organic Field Effect Transistors by Inserting Different-Thickness Pentacene Inducing Layers. Org. Electron. 2015, 26, 186-190.
[14] Qian, C.; Sun, J.; Kong, L.-a.; Fu, Y.; Chen, Y.; Wang, J.; Wang, S.; Xie, H.; Huang, H.; Yang, J.; Gao, Y. Multilevel Nonvolatile Organic Photomemory Based on Vanadyl-Phthalocyanine/Para-Sexiphenyl Heterojunctions. ACS Photonics 2017, 4, 2573-2579.
[15] Kösemen, Z.-A.; Kösemen, A.; Öztürk, S.; Canımkurbey, B.; Erkovan, M.; Yerli, Y. Performance Improvement in Photosensitive Organic Field Effect Transistor by Using Multi-Layer Structure. Thin Solid Films 2019, 672, 90-99.
[16] Pandey, A.-K.; Aljada, M.; Pivrikas, A.; Velusamy, M.; Burn, P.-L.; Meredith, P.; Namdas, E.-B. Dynamics of Charge Generation and Transport in Polymer-Fullerene Blends Elucidated Using a PhotoFET Architecture. ACS Photonics 2014, 1, 114-120.
[17] Hwang, H.; Kim, H.; Nam, S.; Bradley, D.-D.-C.; Ha, C.-S.; Kim, Y. Organic Phototransistors with Nanoscale Phase-Separated Polymer/Polymer Bulk Heterojunction Layers. Nanoscale 2011, 3, 2275-2279.
[18] Nam, S.; Seo, J.; Park, S.; Lee, S.; Jeong, J.; Lee, H.; Kim, H.; Kim, Y. Hybrid Phototransistors Based on Bulk Heterojunction Films of Poly(3-hexylthiophene) and Zinc Oxide Nanoparticle. ACS Appl. Mater. Interfaces 2013, 5, 1385-1392.
[19] Rim, Y.-S.; Ok, K.-C.; Yang, Y.-M.; Chen, H.; Bae, S.-H.; Wang, C.; Huang, Y.; Park, J.-S.; Yang, Y. Boosting Responsivity of Organic−Metal Oxynitride Hybrid Heterointerface Phototransistor. ACS Appl. Mater. Interfaces 2016, 8, 14665-14670.
[20] Li, M.; Nykypanchuk, D.; Cotlet, M. Improving the Responsivity of Hybrid Graphene−Conductive Polymer Photodetectors via Nanowire Self-Assembly. ACS Photonics 2018, 5, 4296-4302.
[21] Liu, Y.; Yang, Y.; Shi, D.; Xiao, M.; Jiang, L.; Tian, J.; Zhang, G.; Liu, Z.; Zhang, X.; Zhang, D. Photo-/Thermal-Responsive Field-Effect Transistor upon Blending Polymeric Semiconductor with Hexaarylbiimidazole toward Photonically Programmable and Thermally Erasable Memory Device. Adv. Mater. 2019, 31, 1902576.
[22] Yanai, T.; Tew, D.-P.; Handy, N.-C.; A New Hybrid Exchange-Correlation Functional Using The Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51-57.
[23] Zhang, L.; Yang, D.; Wang, Y.; Wang, H.; Song, T.; Fu, C.; Yang, S.; Wei, J.; Liu, R.; Zou, B. Performance Enhancement of FET-Based Photodetector by Blending P3HT with PMMA. IEEE Photon. Technol. Lett. 2015, 27, 1535-1538.
[24] Ishiguro, Y.; Hayakawa, R.; Chikyow, T.; Wakayama, Y. Optically Controllable Dual-Gate Organic Transistor Produced via Phase Separation between Polymer Semiconductor and Photochromic Spiropyran Molecules. ACS Appl. Mater. Interfaces 2014, 6, 10415-10420.
[25] Wang, X.; Zhao, F.; Xue, Z.; Yuan, Y.; Huang, M.; Zhang, G.; Ding, Y.; Qiu, L. Highly Sensitive Polymer Phototransistor Based on The Synergistic Effect of Chemical and Physical Blending in D (Donor)–A (Acceptor) Copolymers. Adv. Electron. Mater. 2019, 5, 1900174.
[26] Nam, S.; Seo, J.; Han, H.; Kim, H.; Bradley, D.-D.-C.; Kim, Y. Efficient Deep Red Light-Sensing All-Polymer Phototransistors with P‐type/N-type Conjugated Polymer Bulk Heterojunction Layers. ACS Appl. Mater. Interfaces 2017, 9, 14983−14989.
[27] Servaites, J.-D.; Ratner, M.-A.; Marks, T.-J. Practical Efficiency Limits in Organic Photovoltaic Cells: Functional Dependence of Fill Factor and External Quantum Efficiency. Appl. Phys. Lett. 2009, 95, 163302.
[28] Tang, F.-C.; Wu, F.-C.; Yen, C.-T.; Chang, J.; Chou, W.-Y.; Chang, S.-H.-G.; Cheng, H.-L. A Nanoscale Study of Charge Extraction in Organic Solar Cells: The Impact of Interfacial Molecular Configurations. Nanoscale, 2015, 7, 104-112.