| 研究生: |
洪富成 Hung, Fu-Cheng |
|---|---|
| 論文名稱: |
自動倉儲系統中儲存策略與撿料效率相關性之研究-以半導體製造公司為例 Research on correlation between storage policy and picking efficiency of an automated storage and retrieval system - a case of a semiconductor manufacturing company |
| 指導教授: |
謝中奇
Hsieh, Chung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 模擬 、自動倉儲系統 、儲存策略 、撿料 |
| 外文關鍵詞: | Picking, Storage policy, Automated storage and retrieval system, Simulation |
| 相關次數: | 點閱:123 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自動倉儲系統是使用自動化搬運設備進行物料出入庫的作業模式,入出庫效率的高低會影響撿料時間的長短。撿料時間太長會使單位時間可撿料項目較少,造成倉庫作業人員績效不佳,撿料效率比傳統平置倉庫更差,以及高投資成本與低效益等等問題。因此,在提高撿料效率的目的下,希望以物料儲存策略、領用頻率及領用量等因素來探討儲存策略與撿料效率的相關性,提供倉儲管理人員做為自動倉儲入庫儲位優先順序安排,以提高撿料出庫效率、縮短人員作業時間,並發揮自動倉儲的效益。
在領用頻率及領用量方面,本研究統計某半導體公司領料紀錄,將領料頻率分高、中、低;領用量分大、中、小。儲存策略則採隨機儲存、定位儲存及分類儲存三種方式;定位儲存及分類儲存會依領用頻率高低決定單一物料或類別物料的儲位優先順序。在驗證方面,本研究會建立實驗模型及撿料訂單,利用模擬來進行儲存策略與撿料效率相關性之分析比較。
研究結果顯示,中、高領用頻率的物料在隨機儲存策略下的撿料效率最差,定位及分類儲存策略的撿料效率較好且接近;低領用頻率的物料領用量愈大,隨機儲存策略的撿料效率愈好,定位及分類儲存策略則則愈差且接近。因此,領用頻率高且領用量大的物料應儲放在出庫時間較短的儲位,且採取定位或分類儲存策略會有較佳的撿料效率;如考慮儲位數量的限制,則採分類儲存策會有較佳儲位空間利用及撿料效率。
關鍵詞: 自動倉儲系統、儲存策略、撿料、模擬
An automated storage and retrieval system (AS/RS) is an operational model in which all materials storage and retrieval are processed by automated transport equipment. Inefficiency of materials storage and retrieval will result in long picking time and lead to low performance of the operators in the warehouse. Therefore, in order to improve picking efficiency without modifying the existing AS/RS, it is necessary to study picking efficiency in terms of storage policy, issue frequency and issue quantity. Once the correlation between storage policy and picking efficiency has been identified, we can use such a result to help the warehouse manager prioritize AS/RS storage locations, improve retrieval efficiency during picking, shorten personnel operation time and increase AS/RS efficiency.
In issue frequency and issue quantity, this research analyzes material issue records of a semiconductor company to define issue frequency grades by high, middle and low, and issue quantity grades by large, middle and small. Random, dedicated and class-based storage policies are used in this research. Storage locations of materials are prioritized by issue frequency in dedicated and class-based storage policies. In verification, this research creates an experimental model and picking orders for studying the correlations between storage policy and picking efficiency with simulation.
Research outcome shows: high and middle issue frequency materials with random storage policy have worse picking efficiency than that of with dedicated and class-based. On the contrary, low issue frequency materials with random storage policy have better picking efficiency than that of with dedicated and class-based. Therefore, high issue frequency and large issue quantity materials should be put into shorter retrieval time locations and have better efficiency by adopting dedicated or class-based storage policy. It will have better stock space utilization and picking efficiency by adopting class-based storage policy if we consider the limited location quantity.
Keywords: Automated storage and retrieval system; Storage policy; Picking; Simulation
中文文獻
劉浚明,2005,倉儲管理學,九十三年度教育部製商整合科技教育改進計畫教材成果。
孫海蛟、董福慶,1995,物流中心儲位管理,經濟部商業自動化系列叢書。
劉浚明、林台茱、黃建豐,2005,食品業倉儲系統規劃方法-以久暢物流中心為例,九十三年度教育部製商整合科技教育改進計畫個案成果。
英文文獻
Bozer, Y.A. and White, J.A. 1984. Travel time models for automated storage/retrieval systems. Institute of Industrial Engineers Transactions, 16 (4), 329-338.
Brynzér, H. and Johansson, M.I., 1996. Storage location assignment: Using the product structure to reduce order picking times. Internationa Journal of Production Economics, 46-47, 959–603.
Eldemir, F. Graves, R.J., Malmborg, C.J., 2004. New cycle time and space estimation models for automated storage and retrieval system conceptualization. International Journal of Production Research, 42(22),4767-4783.
Frazelle, E.H. and Sharp, G.P., 1989. Correlated assignment strategy can improve order-picking operation. Industrial Engineering, 21(4), 33-37.
Graves, S.C., Hausman, W.H. and Schwarz, L.B., 1977. Storage retrieval interleaving in automated warehousing systems. Institute of Industrial Engineers Transactions, 23(9), 935-945.
Han, M.H., McGinnis, L.F., Shieh, J.S. and White, J.A. 1987. On sequencing retrievals in an automated storage/retrieval system. IIE Transactions, 19(3), 56-66.
Hausman, W. H., Schwarz, L. B., and Graves, S. C., 1976. Optimal storage assignment in automatic warehousing systems, Management Science. 22(6), 629-638.
Heskett, J.L., 1963. Cube-per-order index – a key to warehouse stock location. Transportation and Distribution Management. 3(4), 27-31.
Hsieh, S. and Tsai, K.-C., 2001. A BOM Oriented Class-Based Storage Assignment in an Automated Storage/Retrieval System. International Journal of Advanced Manufacturing Technology, 17, 683–691.
Hu, Y.-H., Huang, S.Y., Chen, C., Hsu, W.-J., Toh, A.C., Loh, C.K. and Song, T., 2005. Travel time analysis of a new automated storage and retrieval system. Computer & Operations Research, 32, 1515–1544.
Lee, S.G., Souza, R.D. and Ong, E.K., 1996. Simulation modelling of a narrow aisle automated storage and retrieval system(AS/RS)serviced by rail-guided vehicles. Computers in Industry, 30, 241-253.
Linn, R.J., Wysa, R.A., 1987. An analysis of control strategies for automated storage and retrieval systems. INFOR, 25(1), 66-83.
Montulet, P. Langevin, A. and Riopel, D., 1998. Minimizing the peak load: an alternative objective for dedicated storage palicies. International Journal of Production Research, 36(5), 1369-1385.
Moon, G. and Kim, G.-P., 2001. Effects of relocation to AS/RS storage location policy with production quantity variation. Computers & Industrial Engineering, 40, 1–13.
Petersen, C.G., Aase, G., 2004. A comparison of picking, storage, and routing policies in manual order picking. International Journal of Production Economics, 92, 11-19.
Potrč, I., Lerher, T., Kramberger, J. and Šraml, M., 2004. Simulation model of multi-shuttle automated storage and retrieval systems. Journal of Materials Processing Technology, 157-158, 236-244.
Randhawa, S. U. and Shroff, R., 1994. Simulation-Based Design Evaluation of Unit Load Automated Storage/Retrieval Systems. Computers & Industrial Engineering, 28(1), pp. 71-79.
Rosenblatt M.J., Eynan A., 1989. Deriving the optimal boundaries for class-based automated storage/retrieval systems, Management Science. 35(12), 1519-1524.
Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G.J., Mantel, R.J. and Zijm, W.H.M., 2000. Warehouse design and control: Framework and literature review. European Journal of Operational Research, 122, 515-533.
Sarker, B.R. and Babu, P.S., 1995. Travel time models in automated storage/retrieval systems: A critical review. International Journal of Production Economics, 40, 173–184.
van den Berg, J.P. and Zijm, W.H.M., 1999. Models for warehouse management: Classification and examples. International Journal of Production Economics, 59, 519-528.