| 研究生: |
黃璿樺 Huang, Hsuan-Hua |
|---|---|
| 論文名稱: |
聲音對比控制法在聲場能量集中之研究 Research on Focusing of Sound Field Energy by Acoustic Contrast Control Method |
| 指導教授: |
涂季平
Too, Gee-Pinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 集中聲音 、控制陣列聲源 、聲音對比控制法 |
| 外文關鍵詞: | focusing sound, line array of controlled sources, acoustic contrast control method |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文計畫一個系統控制陣列聲源來集中聲音,其目的在增加使用者區域之聲音能量,經由控制聲源輸入之訊號來減少其他區域之聲音能量。接著以聲音對比控制理論為基礎,利用Matlab程式得到陣列麥克風之權重函數,並建立控制陣列聲源之實驗及使用Matlab程式模擬於不同聲場邊界與控制方法下之聲場分佈。
為了印證此聲音對比控制法,本論文將各種不同參數條件做模擬分析,例如:將能量集中於一點、能量集中於區域、陣列聲源數量、陣列聲源間距與不同發射頻率之比較等;以及在自由聲場與一般聲場環境下,將未受控制聲源與受控制聲源之實驗結果作比較,以驗證本研究之可行性及完成最佳化聲場配置。最後,由一般聲場實驗中得知,聲音響亮區與聲音安靜區有6~11 dB值之差異,由此可知,經由聲音對比控制法可實現於一般聲場之能量集中,預計在未來可有多元化之運用。
In this thesis, a system for focusing sound around the user by using a line array of controlled sources is proposed. To increase acoustic energy only in the “bright zone” where the user is within but to reduce it in the other selected “dark zone” by controlling input signals is the main objective of this study. The program based on acoustic contrast control theory is designed to obtain input weighting coefficients for microphones using Matlab. Experiments with a line array of controlled sources and simulations under Matlab are established in order to observe the distribution of sound field under different boundary and control conditions.
To test this system, a variety of simulation conditions are used, such as: energy focused at a point, energy focused in a region, the number of a line array sources, array element distance, and emission frequency. As for experiment, in the free field and reflected sound field, the uncontrolled and controlled sources are taken to compare results. Based on simulations and experiments, the optimal configurations for controlled sound field are obtained. Finally, from general sound field experiments, the difference of sound pressure level between bright zone and dark zone is 6 ~ 11 dB. Therefore, general sound field energy focusing is realized via acoustic contrast control method and expected to have a diversification of use in the future.
【1】 P. A. Nelson and S. J. Elliott,“Active Control of Sound, ”Academic, New York, 1992.
【2】 J.-W. Choi and Y.-H. Kim, “Generation of an acoustically bright zone with an illuminated region using multiple sources,” J. Acoust. Soc. Am. 111, 1695–1700, 2002.
【3】 C.-H. Lee, J.-H. Chang, J.-Y. Park, and Y.-H. Kim, “Personal Monitor & TV Audio System by Using Loudspeaker Array,” Korean Society for Noise and Vibration Engineering, 17(8), 701-710, 2008.
【4】 Jin-Young Park, Ji-Ho Chang, Yang-Hann Kim, and Youngjin Park, “Personal stereophonic system using loudspeakers: feasibility study,” International Conference on Control, Automation and Systems, in Korea, 2008.
【5】 Ji-Ho Chang, Chan-Hui Lee, Jin-Young Park, and Yang-Hann Kim, “A realization of sound focused personal audio system using acoustic contrast control,” J. Acoust. Soc. Am. 125 (4), 2091–2097, 2009.
【6】 李志中,“多聲道音響重現之分析與實現,”國立交通大學機械工程研究所博士論文, 中華民國九十六年六月.
【7】 歐昆應,“三度空間環場音效之分析與合成,”國立交通大學機械工程研究所碩士論文, 中華民國九十三年六月.
【8】 D. R. Jackson and D. R. Dowling, “Phase conjugation in underwater acoustics”, J.A.S.A. 89, pp. 171-181, 1991.
【9】 D. Caesarea and M. Fink, “Time Reversal of Ultrasonic Field, PartIII:Theory of the Closed Time-Reversal Cavity”, IEEE Trans. UFFC.,567-578, Sep 1992.
【10】 D. Caesarea and M. Fink, “Focusing with plane time-reversal mirrors: an efficient alternative to closed cavities”, J.A.S.A., 2373-2386, Oct 1993.
【11】 N. Chakroun, M.Fink, and F. Wu, “Time reversal processing in ultrasonic non destructive testing”, IEEE Trans. Uffc., 1087-1098, 1995.
【12】 涂季平,謝羽豪,李新立, “時反法于海下通訊與定位之研究現況,” 海洋及水下科技季刊, 十八卷, 第四期, 2008。
【13】 白明憲,“聲學理論與應用,”全華科技圖書有限公司,2001年。
【14】 蔡國隆,王光賢,涂聰賢,“聲學原理與噪音量測控制”,全華科技圖書有限公司,2005年。
【15】 A. B. Baggeroer, W. A. Kuperman, and P. N. Michalevsky, “An Overview of Matched Field Methods in Ocean Acoustics,” IEEE J. Ocean. Eng. 18, 401–424, 1993.
【16】 C. Dorme and M. Fink, “Focusing on transmit-receive mode through inhomogeneous media: the time reversal matched filter approach,” J. Acoust. Soc. Am. 98, 1155–1162, 1995.
【17】 J. J. Lopez and A. Gonzalez, “Experimental Evaluation of Cross-Talk Cancellation Regarding Loudspeakers’ Angle of Listening,” IEEE Signal Processing Letters, 8(1), 13-15, 2001.
【18】 M. Tanter, J.-L. Thomas, and M. Fink, “Time reversal and the inverse filter,” J. Acoust. Soc. Am. 108, 223–234, 2000.
【19】 P. A. Nelson, H. Hamada, and S. J. Elliott, “Adaptive Inverse Filters for Stereophonicphonic Sound Reproduction,” IEEE Transactions on Signal Processing, 40(7), 1621-1632, 1992.
【20】 P. J. Westervelt, “Parametric acoustic array,” J. Acoust. Soc. Am. 35, 535–537, 1963.
【21】 M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566, 1992.
【22】 S. Uņņikrishņa Pillai, “ Array Signal Processing , ” Springer-Verlag, New York, 1989.