| 研究生: |
陳國益 Chen, Kuo-Yi |
|---|---|
| 論文名稱: |
磁控電子束轟擊金屬離子推進器之開發 Development of Metallic Ion Thruster using Magnetron Electron-beam Bombardment |
| 指導教授: |
張博宇
Chang, Po-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 電推進器 、物理氣相沉積 、電子束蒸發技術 、固態推進劑 |
| 外文關鍵詞: | Electric thrust, Physical vapor deposition, Electron-beam vaporizer, Solid propellant |
| 相關次數: | 點閱:159 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們開發出了一種使用固態金屬作為推進劑的新型態離子推進器:磁控電子束轟擊金屬離子推進器Metallic Ion Thruster using Magnetron E-beam Bombardment (MIT-MEB)。不同於使用惰性氣體作為推進劑的經典離子推進器/電漿推進器,MIT-MEB使用固體金屬作為推進劑,因此有儲存密度高、成本低廉、易於儲存、安全等優點。可以使用任何導體作為推進劑。而元素週期表上有八成是金屬,因此相較傳統離子推進器而言,MIT-MEB在材料選擇上有絕對的優勢。本設計分為三個部分:金屬離子產生器和離子加速器以及中和器。首先自由電子從熱燈絲發射並被電場加速衝向金屬靶,使得金屬被加熱並蒸發。而金屬靶表面和燈絲之間具有約0.2~0.3T的磁場用於聚焦電子,當金屬蒸氣通過被磁場侷限而形成的高密度的電子雲時,會被其中的高能電子碰撞並游離。金屬被游離成離子後會被電場加速並排出裝置,而外部的中和器則釋放電子並與離子一同離開推進器。推進器最終排出等量的高速離子與電子藉以保持裝置的電中性。由於電子束工作條件與真空條件無關,因此可在超高真空環境中運作。我們已經製作並測試了原型機,通過電子束轟擊將金屬靶加熱至超過415℃。在5 kV/3 mA和1 kV/15 mA的電子束電流轟擊下,使用鋅片作為測試靶材,測得其質量流率為(2.2±0.4)E-4(g/s)與(1.8±0.3)E-5(g/s),游離率為0.03±0.01 %和1.1±0.3 %。因此,離子貢獻之推進力理論值分別為9.0±1.0 μN和10.3±0.7 μN,總功率約為25 W左右。比衝Isp理論值分別為12300 s和5500 s。若考慮未游離之蒸氣的貢獻,則總推進力分別為99±40 μN 和 17.3±4.0 μN.
The electric thruster is a device that uses electromagnetic fields to control and accelerate ions. An ion thruster using a metallic target as the propellant has been developed. Different from the inert gas used in conventional plasma thrusters, the metallic target is in the solid state, high density, easy to be stored and cheap. The design is divided into three parts: a metallic evaporator and an ion accelerator and a neutralizer. The principle of electron-beam (E-beam) evaporation, where a metal target is evaporated and ionized by thermal-emitted electrons, is used. The working condition is independent of the vacuum condition so that it works in the ultra-high vacuum space. A focusing magnet with a magnetic field about 0.2~0.3 T between the target surface and the filament is used to guide electrons toward the center of the target so that the metal is evaporated and ionized. A prototype has been built and tested. The metallic targets were heated to more than 415 °C by electron bombardment. A mass flow rate of (2.2±0.4)E-4 (g/s) and (1.8±0.3)E-5 (g/s) using Zn at 5 kV/3 mA and 1 kV/ 15mA E-beam current was measured. An ionization rate of 0.03±0.01 % and 1.1±0.3 % using Zn at 5 kV and 1 kV E-beam current was measured. Therefore, the estimated thrust is 9.0±1.0 μN and 10.3±0.7 μN with a power of about 25 W. The Estimated Isp is 12,300 s and 5,500 s respectively. Considering the contribution of vapors, the total thrust is 99±40 μN and 17.3±4.0 μN respectively.
[1] Ming-Hsueh Shen. Development of a micro ecr ion thruster for space propulsion. Master’s thesis, National Cheng Kung University, 2016. Replotted form Kuriki, K. and Arakawa. Y., Introduction to electric propulsion, U. Tokyo Press., Tokyo, 2003.
[2] K. Kuriki and Y. Arakawa. Introduction to electric propulsion. University of Tokyo Press, 2003.
[3] Ashkenazy, Joseph & Appelbaum, G & Ram-Cohen, T & Warshavsky, A & Tidhar, I & Rabinovich, L. (2007). VENµS Technological Payload - The Israeli Hall Effect Thruster Electric Propulsion System. 10.13140/2.1.4172.4801.
[4] Burton, Rodney L. "Pulsed plasma thrusters." Encyclopedia of Aerospace Engineering (2010).
[5] Ulrich Walach. Schematic layout of a Pulsed Plasma Thruster, Wikipedia.
[6] Changsha Mingguan Metal Technology Co. http://www.tungstenmoly.com/html/Pure-Tungsten/79.html.
[7] Kurt J. Lesker Company. Deep Cup Evaporation Boat. Tungsten Wire/Evaporation Coil, https://www.lesker.com/newweb/evaporation_sources/thermal_boat_notched.cfm?pgid=4
[8] Jatosado. Electron Beam Deposition, Wikipedia.
[9] Crowell, C. R. "The Richardson constant for thermionic emission in Schottky barrier diodes." Solid-State Electronics 8.4 (1965): 395-399.
[10] K.S Sree Harsha. Principle of Vapor Deposition of Thin Films. Elsevier Science, 2006
[11] SPM Science. Thermionic Emission. http://spmphysics.onlinetuition.com.my/2013/06/thermionic-emission.html
[12] Giubileo, F.; Di Bartolomeo, A.; Iemmo, L.; Luongo, G.; Urban, F. Field Emission from Carbon Nanostructures. Appl. Sci. 2018, 8, 526.
[13] Inductiveload. Beta-minus Decay.svg. Wikipedia.
[14] Jaro.p. Lorentz force.svg. Wikipedia.
[15] Marcin Białek. Cyclotron motion wide view.jpg. Wikipedia.
[16] Magnetic mirror
https://cnx.org/contents/pmp6Kk2R@7/Force-on-a-Moving-Charge-in-a-Magnetic-Field-Examples-and-Applications
[17] Märk, Tilmann D., and Gordon H. Dunn, eds. Electron impact ionization. Springer Science & Business Media, 2013.
[18] First Ionization Energy. Wikipedia.
[19] Goldstein, Joseph I., et al. Scanning electron microscopy and X-ray microanalysis. Springer, 2017.
[120] K. Burak Ucer/L06-Vacuum_Evaporation/Department of Physics Wake Forest
[21] [Online] https://luxel.com/wp-content/uploads/2013/04/Luxel-Vapor-Pressure-Chart.pdf.
[22] Gao-Yu Hsiung, Vacuum Technology The sixth OCPA Accelerator School (OCPA2010),July 29 to August 7, in Beijing, China
http://csns.ihep.ac.cn/english/conference/ocpa2010/school_courses/images/PDF/T5-Vacuum%20Technology.pdf
[23] Turbomolecular pump structure https://www.lesker.com/newweb/faqs/question.cfm?id=477
[24] Structure of hot cathode ion gauge
https://www.slideshare.net/LukeHinkle/complex2-simple-vacuum-training-quick-demo-presentation
[25] Jaya Mukherjee, V Dileep Kumar, S P Yadav, Tripti A Barnwal, and Biswaranjan Dikshit. Plasma diagnosis as a tool for the determination of the parameters of electron beam evaporation and sources of ionization. Measurement Science and Technology, 27(7):075007, jun 2016.
[26] J.J Scholtz, D Dijkkamp, and R.W.A Schmitz. Secondary electron emission properties. Philips Journal of Research, 50(3):375 – 389, 1996. New Flat, Thin Display Technology.
[27] David M. Suszcynsky and Joseph E. Borovsky. Modified sternglass theory for the emission of secondary electrons by fast-electron impact. Phys. Rev. A, 45:6424–6428, May 1992.
[28] R. K. Yadav and R. Shanker. Contribution of backscattered electrons to the total electron yield produced in collisions of 8–28 kev electrons with tungsten. Pramana, 68(3):507–515, Mar 2007.
[29] Jaspreet Kaur, Dhanoj Gupta, Rahla Naghma, Debdeep Ghoshal, and Bobby Antony. Electron impact ionization cross sections of atoms. Canadian Journal of Physics, 93(6):617–625, 2015.
[30] H. Tawara and T. Kato. Total and partial ionization cross sections of atoms and ions by electron impact. Atomic Data and Nuclear Data Tables, 36(2):167 – 353, 1987.
[31] A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.5.1), [Online]. Available: https://physics.nist.gov/asd [2017, December 24]. National Institute of Standards and Technology, Gaithersburg, MD., 2017.
[32] Dan M. Goebel and Ira Katz. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. Wiley, 1st edition, November 2008.