簡易檢索 / 詳目顯示

研究生: 簡卉菁
Chien, Hui-Ching
論文名稱: 利用微加工技術製造溶氧微感測器
Using Micro-Fabrication Techniques to Manufacture the Dissolved Oxygen Sensor
指導教授: 周澤川
Chou, Tse-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 126
中文關鍵詞: 溶氧感測器微加工技術網印
外文關鍵詞: screen-printing, micro-fabrication technique, dissolved oxygen sensor
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   溶氧量在環境與生物體皆扮演一個重要的角色,包括生物體生化醫藥、食品工業、廢水處理以及水產養殖等。
      但是,有鑑於海水中之氯離子,截至目前為止,尚無可直接浸於海水中,藉以長期偵測海水中溶氧量的感測器。因此,本研究主要利用最簡單而又便宜的厚膜網印技術,將電極圖案製備於氧化鋁板基材上,再覆蓋一層高分子薄膜於電極表面,藉以保護電極並增加其耐久性。
      本實驗主要以電化學為基礎,選用厚膜網印之黃金膠,作為電極材料,並覆蓋一層聚苯乙烯(Polystyrene,PS),在3%NaCl溶液中進行水中含氧量之感測,結果顯示在1atm,25℃的情況下,當施加電位在-0.6V (vs. Ag/AgCl)時,其應答電流隨著水中溶氧濃度之增加而增加,呈良好之線性關係,而其R2 = 0.9997,靈敏度則為 -0.245μA/ppm×mm2,偵測極限為4 ppm。此外,在100小時之老化測試中,電流皆保持一穩定值。
      另外,血液中之含氧量亦常被用來做為人體健康與否之重要指標,但是,有鑑於人體血液檢體之變化快速,一旦和大氣接觸,馬上會被空氣中和掉,增加氧,流失二氧化碳,pH上升等。因此,本研究希望研發出一種可植入式微感測晶片,並可同時偵測氧氣以及pH值,改善檢體一遇空氣及變質之缺點,藉以提高其準確性。
      本實驗主要利用微機電系統之技術,選用生物相容性高的玻璃為基材,製作微電極,並整合微流體通道,而成微感測晶片。此晶片只需要0.525μL之微量檢體,即可即時偵測溶液中之含氧量。並比較此電極同時於75 mL以及0.525μL之檢體中進行水中溶氧量之測試,其量測電流之差異。
      結果顯示當施加電位在-0.2V (vs. Ag/AgCl)時,其應答電流隨著體積流速增加而增加;當固定體積流速1.46x10-3 cm3/sec,在-0.2V (vs. Ag/AgCl)之電位下,連續通入有氧(8 ppm)及無氧(add Na2SO3)之3%NaCl溶液於感測晶片中,其應答電流值分別為-2.4μA及-0.5μA。再比較於75 mL之燒杯中進行溶氧量之測試,其應答電流值分別為-3.87μA及-0.76μA。

      Dissolved oxygen plays an important role both in the environment and in the living beings, such as human medication, food industry, wastewater treatment, and aquatic cultivation.
      Because of the chlorine ions in brine, there is no available sensor which can be applied directly in the sea water and give accurate sensing results over a long period of time. Consequently, we employ a simple and low-cost method, thick film screen-printing, printing the electrode pattern on an aluminum oxide sheet and covering with a thin polymer film over the electrode surface for protecting the working electrode so as to enhance the durability.
      Based on electrochemical principles, gold was used as the electrode material in this study, and polystyrene as the coating material. Dissolved oxygen sensing was achieved at 1atm, 25℃, and a -0.6V (vs. Ag/AgCl) applied potential in the 3%NaCl aqueous solution. The result shows that the response current is linearly proportional to the concentration of the dissolved oxygen with 0.9997 R2 and -0.245μA/ppm×mm2 sensitivity. The minimum limit of detection of this developed sesor is 4ppm. The current is stable in the aging test which lasted 100 hours long.
      Dissolved oxygen concentration in blood is usually taken as an index of physical condition. Blood samples deteriorate badly in contact with air, which brings about an increase of oxygen, a decrease in carbon dioxide, and a raise of pH. An embedding micro-sensing chip is therefore desirable to detect oxygen and pH simultaneously and also to exempt the process from air-contact deterioration. Hence the accuracy of this sensing system would have to be improved.
      Glass was used as the substrate for its good biocompatibility. The micro-sensing chip, in which micro-electrodes were fabricated and micro-fluidic channels were integrated, was fabricated by Micro-Electro-Mechanical-System (MEMS). A small sample volume of mere 0.525μL was enough to immediately locate the dissolved oxygen concentration. Two samples of different volumes, 75mL and 0.525μL respectively, went through this dissolved oxygen experiment at the same electrode of 3mm×1mm dimensions.
      The results show that the response current increases with volume flow rate when potential applied at-0.2V(vs. Ag/AgCl). The response currents are -2.4μA and-0.5μA, respectively, while continuously pumping oxygen-carrying 3%NaCl solution and oxygen-free 3%NaCl solution into the micro-sensing chip at 1.46x10-3 cm3/sec volume flow rate. Comparing the dissolved oxygen experiment achieved in a beaker with the response currents are -3.87μA and -0.76μA respectively.

    目錄 頁次 中文摘要 Ι 英文摘要 IIΙ 誌謝 V 目錄 VΙ 表目錄 XΙ 圖目錄 XIΙ 符號說明 XVI 第一章 緒論 1 1-1感測器簡介 1 1-2氧氣的簡介 2 1-2-1水中之含氧量 2 1-2-2血液中之含氧量 2 1-3我國水產養殖業之概況 6 1-4文獻回顧 - 水中含氧量分析方法之簡介 8 1-4-1化學方法 8 1-4-1-1 Winkler Method 8 1-4-1-2色度法 9 1-4-2電化學方法 10 1-4-2-1電位量測法 10 1-4-2-2電流量測法 10 1-4-2-2-1電流量測法~厚膜技術 11 1-4-2-2-2電流量測法~薄膜技術 13 1-4-2-2-3電流量測法~T-T法 14 1-4-2-2-4電流量測法~血液中氣體之偵測 14 1-4-2-2-5電流量測法~其他 15 1-4-2-2-6電流量測法~掃瞄式電化學顯微鏡 15 1-4-3光學式溶氧感測器 16 1-5聚苯乙烯的簡介 17 1-6電子束蒸鍍法的簡介 18 1-7研究動機與目的 20 1-7-1研究動機 20 1-7-2研究目的 21 第二章 原理 22 2-1水中溶氧之反應機構 22 2-2水中溶氧之擴散模式 23 2-3溫度與應答電流之關係 29 2-4水中溶氧於為流體系統之擴散模式 32 第三章 實驗儀器與步驟 36 3-1藥品與儀器設備 36 3-1-1 實驗藥品 36 3-1-2 儀器設備 37 3-2水中溶氧之校正 38 3-3電極製備 38 3-3-1厚膜網印電極的製備 38 3-3-1-1氧化鋁板基材的前處理 38 3-3-1-2厚膜網印電極的製備 38 3-3-1-3外接電路的製備 39 3-3-2以聚苯乙烯修飾黃金電極 42 3-3-3薄膜蒸鍍電極的製備 42 3-3-3-1玻璃基材的前處理 42 3-3-3-2薄膜電極的製備 43 3-3-3-3 銀/氯化銀參考電極之製備 43 3-3-4微感測晶片之製備 45 3-4水中溶氧在感測電極之特性分析 46 3-4-1水中溶氧感測電極於批次感測系統中之特性分析 46 3-4-1-1批次感測裝置 46 3-4-1-2循環伏安法 46 3-4-1-3極化曲線 48 3-4-1-4應答曲線、靈敏度以及應答時間的測試 48 3-4-1-5老化測試 49 3-4-2水中溶氧感測電極於微流體系統中之特性分析 50 3-4-2-1微流體系統之感測裝置 50 3-4-2-2自製參考電極之校正 50 3-4-2-3探討不同電位掃瞄速度下之電流-電位曲線 50 3-4-2-4探討流體在不同流速下之電流-電位曲線 51 3-4-2-5應答曲線的測試 51 3-5電極之表面分析 54 3-5-1掃描式電子顯微鏡分析 54 3-5-2掃描式探針顯微鏡分析 54 第四章 結果與討論 55 4-1厚膜網印黃金電極於硫酸水溶液中對水中溶氧之電化學特性分析 55 4-1-2循環伏安法 55 4-1-2極化曲線求取電位窗 57 4-1-3靈敏度測試 60 4-1-4穩定度測試 63 4-2不同電極材料於3wt%氯化鈉水溶液中對水中溶氧之電化學特性 探討 65 4-2-1網印黃金電極 65 4-2-2碳棒 73 4-2-3修飾高分子膜之網印黃金電極 75 4-2-3-1聚二甲基矽氧烷高分子膜 75 4-2-3-2聚苯乙烯高分子膜 78 4-3修飾聚苯乙烯於厚膜網印黃金電極上對於水中溶氧之電化學特性 探討 81 4-3-1水中飽和溶氧時間的確定 81 4-3-2水中溶氧量的校正曲線 81 4-3-3聚苯乙烯膜厚之測定及其表面結構 84 4-3-4循環伏安法 84 4-3-5極化曲線求取電位窗 86 4-3-6靈敏度與穩定度測試 88 4-3-7溫度測試 92 4-3-8老化測試 96 4-3-9掃描式電子顯微鏡表面分析 96 4-4探討於微流體系統中,利用薄膜技術製備之白金電極偵測水中溶 氧之特性分析 99 4-4-1自製參考電極之校正 99 4-4-2循環伏安法 99 4-4-3探討流體在不同流速下之電流-電位曲線 102 4-4-4應答曲線的測試 102 4-5綜合討論 111 4-5-1不同電極材料文獻值之比較 111 4-5-2含氧量之測試中探討於批式與微流體系統之差異性 113 4-5-3溫度敏感性 115 第五章 結論與建議 117 5-1結論 117 5-1-1批次感測系統 117 5-1-2微流體系統 119 5-2建議事項 120 參考文獻 121 自序 126

    1.Gopel, W., Hesse, J., and Zemel, J. N., Sensor. VCH Verlaysgesellschaft mbH,
    New York, 1991, pp61.

    2.Janata, J., Principles of Chemical Sensors, Plenum Press, New York, 1989.

    3.Suzuki, H., Microfabrication of chemical sensors and biosensors for
    environmental monitoring, Materials Science and Engineering C, 12, 55~61(2000).

    4.Lide, D. R., Handbook of Chemistry and Physics, CRC, 76th Edition, 1995~1996.

    5.何敏夫,臨床化學,合記出版社,臺北市,417~441,2000。

    6.黃志賢,空氣中的氧氣是如何進入血液中。

    7.李龍雄,水產養殖學,前程出版社,高雄市,第1,72頁。

    8.Clark, L.C., Monitor and control of blood and tissue oxygen tension, Trans. Am.
    Soc. Artificial Intern, 2, 41~49(1956).

    9.Clark, L.C., Electrochemical device for chemical analysis, U.S. patent, No
    2913386, 1956.

    10.Hitchmam, M. L., Measurement of Dissolved Oxygen, John Wiley & Sons, Inc., New
    York, 1978.

    11.Crosson, M., and Gibb, R., Dissolved Oxygen and Chloride Determination in
    Water, J. Chem. Ed., 69, 10, 830~832(1992).

    12.Glasspool, W. V., and Atkinson, J. K., A screen-printed amperometric dissolved
    oxygen sensor utilising an immobilised electrolyte gel and membrane, Sensors
    and Actuators B, 48, 308~317(1998).

    13.Cranny, A., and Atkinson, J. K., Thick film silver- silver chloride reference
    electrodes, Meas. Sci. Technol., 9, 1~7(1998).

    14.Atkinson, J. K., Cranny, A. W. J., Glasspool, W. V., and Mihell J. A., An
    investigation of the performance characteristics and operational lifetimes of
    multi-element thick film sensor arrays used in the determination of water
    quality, Sensors and Actuators B, 54, 215~231(1999).

    15.Atkinson, J. K., and Glasspool, W. V., An investigation of the factors
    influencing stability in continuously-powered screen-printed amperometric
    dissolved oxygen sensors, Microelectronics Internationa, 18, 2, 26~30(2001).

    16.Atkinson, J. K., and Glasspool, W. V., An evaluation of the characteristics of
    membrane materials suitable for the batch fabrication of dissolved oxygen
    sensors, Microelectronics Internationa, 20, 2, 32~40(2003).

    17.Suzuki H., Sugama A., Kojima N., Miniature Clark-type Oxygen Electrode with a
    Three-electrode Configuration, Sensors and Autuators B, 2, 297~303(1990).

    18.Suzuki. H., Ozawa. H., Sasaki. S., Karube. I., A novel thin-film Ag/AgCl anode
    structure for microfabricated Clark-type oxygen electrodes, Sensors and
    Actuators B, 53, 140~146(1998).

    19.Suzuki. H., Hirakawa. T., Sasaki. S., Karube. I., Micromachined
    liquid-junction Ag/AgCl reference electrodes, Sensors and Actuators B, 46,
    146~154(1998).

    20.Suzuki. H., Hirakawa. T., Sasaki. S., Karube. I., An integrated module for
    sensing pO2, pCO2, and pH, Analytica Chimica Acta 405, 57~65(2000).

    21.Suzuki. H., Hirakawa. T., Hoshi. T., Toyooka. H., Micromachined sensing module
    for pO2 pCO2 and pH and its design optimization for practical use, Sensors and
    Actuators B, 76, 565~572(2001).

    22.Chou, T. C., Ng, K. M., Wang, S. H., Gold-solid polymer electrolyte sensor for
    detecting dissolved oxygen in water, Sensors and Actuators B, 66,
    184~186(2000).

    23.吳嘉明,金修飾高分子固態電解質感測器偵測水中溶氧之研究,1996。

    24.Mitsubayashi, K., Wakabayashi, Y., Murotomi, D., Yamada, T., Kawase, T.,
    Iwagaki, S., and Karube, I., Wearable and flexible oxygen sensor for
    transcutaneous oxygen monitoring, Sensors and Actuators B, 95, 373~377(2003).

    25.Mao, L., Jin, J., Song, Li., Yamamoto, K., and Jin, L., Electrochemical
    Microsensor for In Vivo Measurements of Oxygen Based on Nafion and
    Methylviologen Modified Carbon Fiber Microelectrode, Electroanalysis, 11, 7,
    499~504(1999).

    26.Panas, M., and Lukaszewicz, J., The stabilising influence of hematin on the
    properties of the oxygen-sensitive carbon electrode, Sensors and Actuators B,
    55, 1~8(1999).

    27.Lai, E. K. W., Beattie, P. D., Orfino, F. P., Simon, E., and Holdcroft, S.,
    Electrochemical oxygen reduction at composite films of Nafion, polyaniline and
    Pt. Electrochimica Acta, 44, 2559~2569(1999).

    28.Ju, H., and Shen, C., Electrocatalytic Reduction and Determination of
    Dissolved Oxygen at a Poly (nile blue) Modified Electrode, Electroanalysis,
    13, 8-9, 789~793(2001).

    29.Hirata, Y., Miura, Y., Tanaka, S., and Nakagawa, T., Synthesis and hydration
    properties of copolymers having sugar side chains and their oxygen
    permeability in the wet state, Journal of Membrane Science, 176, 21~30(2000).

    30.Payra, P., and Dutta, P. K., Development of a dissolved oxygen sensor using
    tris(bipyridyl) ruthenium (II) complexes entrapped in highly siliceous
    zeolites, Microporous ans Mesoporous Materials, 64, 109~118 (2003).

    31.Lazarin, A. M., Borgo, C. A., and Gushikem, Y., A platinum electrode coated
    with a copper (II) aminopropyl complex-cellulose acetate membrane and its use
    for dissolved oxygen reduction, Journal of Membrane Science, 221,
    175~184(2003).

    32.Borgo, C. A., Ferrari, R. T., Colpini, L. M. S., Costa, C. M. M., Baesso, M.
    L., and Bento, A.C., Voltammetric response of a copper(II) complex
    incorporated in silica-modified carbon-paste electrode, Analytica Chimica
    Acta, 385, 103~109(1999).

    33.Torisawa, Y., Kaya, T., Takii, D., Oyamatsu, Y., Nishizawa, M., and Matsue,
    T., Scanning Electrochemical Microscopy (SECM) - Based Drug Sensitivity Test
    for Cell Culture Integrated in Silicon Microstructures, Anal. Chem., 75,
    2154~2158(2003).

    34.Torisawa, Y., Kaya, T., Takii, Oyamatsu, Y., Nishizawa, M., and Matsue, T.,
    Monitoring the Cellular Activity by Scanning Electrochemical Microscopy (SECM)
    of a cultured single cell. A comparison with fluorescence viability
    monitoring, Biosens. Bioelectron., 18, 1379~1383 (2003).

    35.莊達人,VLSI製造技術,高立,第159~162頁,2001。

    36.Adzic, R. R., Tripkovic, A. V., and Markovic, N. M., Oxygen reduction on
    electrode surfaces modified by foreign metal ad-atoms:lead ad-atoms on gold,
    J. Electroanal. Chem., 114, 37~51(1980).

    37.Linek, V., Vacek, V., Sinkule, J., and Beneˆs, P., Measurement of Oxygen by
    Membrane-covered Probes, Ellis Horwood, Chichester, UK, 1988.

    38.Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst
    structure, J. Mol. Catal., 38, 5~25(1986).

    39.Smith, J. M., and Van Ness, H. C., Introduction to Chemical Engineering
    Thermodynamics, McGraw-Hill, New York, 1987.

    40.Parthasarathy, A., Srinivasan, S., and Appleby, A. J., Temperature Dependence
    of the Electrode Kinetic of Oxygen Reduction at Platinum/Nafion Interface-A
    Microelectrode Investigation, J. Electrochem. Soc., 139, 9, 2530~2537(1992).

    41.Compton, R. G., Fisher, A. C., Wellington, R. G., Dobson, P. J., and Leigh; P.
    A., Hydrodynamic voltammetry with microelectrodes: channel microband
    electrodes; theory and experiment, J. Phys. Chem., 97, 40, 10410~10415(1993).

    42.Yunus, K., and Fisher, A. C., Voltammetry Under Microfluidic Control : a Flow
    Cell Aproach, Electroanalysis, 15, 22, 1782~1786(2003).

    43.Stevens, N. P. C., Fulian, Q., Gooch, K. A., and Fisher, A. C., Steady-State
    Voltammetry Using Microwire Electrodes under Microfluidic Control, J. Phys.
    Chem. B, 104, 30, 7110~7114(2000).

    44.Fulian, Q., Gooch, K. A., Fisher, A. C., Stevens, N. P. C., and Compton, R.
    G., Computer-Aided Design and Experimental Investigation of a Hydrodynamic
    Device : The Microwire Electrode, Anal. Chem., 72, 15, 3480~3485(2000).

    45.Archer, P. B. M., and Bartlett, P. N., Conducting Polymer Gas Sensor, J.
    Electrochem. Soc., 19, 125~140(1989).

    46.林景崎等,電子材料之腐蝕與防蝕,材料會訊,第11卷,第1期,第4~8頁,2003。

    47.田福助, 電化學理論與應用,高立圖書有限公司,第五章,1997。

    48.藤嵨昭、相澤益男及井上徹著,陳震及姚建年譯,蔡生民校,電化學測定方法,北京大學
    出版社,1995。

    49.Kim, T. J., Jurng, T. H., Chung, U. H., and Hong, S. I., Simultaneous
    determination of oxygen transport characteristics of six membranes by
    hexagonal dissolved oxygen sensor system, Sensors and Actuators B, 72, 11~20
    (2001).

    50.Prudenziati, M., Thick Film Sensors, Elsevier, New York, 1994.

    下載圖示 校內:2005-07-30公開
    校外:2005-07-30公開
    QR CODE