| 研究生: |
田依 Tien, I |
|---|---|
| 論文名稱: |
探討血管生成素-1及血管生成素-2在A群鏈球菌感染中扮演的角色 Study on the roles of angiopoietin-1 and angiopoietin-2 in group A streptococcal infection |
| 指導教授: |
劉清泉
Liu, Ching-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | A群鏈球菌感染 、血管生成素-1 、血管生成素-2 、激肽釋放酶結合蛋白 、生物指標 |
| 外文關鍵詞: | Group A streptococcus infection, angiopoietin-1, angiopoietin-2, kallistatin, biomarkers |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A 群鏈球菌可以引起多種嚴重程度不等的疾病,輕微如咽喉炎,嚴重之併發症,包括壞死性筋膜炎、敗血症、鏈球菌毒性休克症候群等。壞死性筋膜炎是A群鏈球菌感染嚴重的侵襲性症狀,快速導致肌肉快速崩解且造成的傷害是不可逆的,因此在感染初期的診斷就顯得更重要。在本研究中,我們透過臨床嚴重侵襲性病人組織檢體發現內皮細胞大量損傷以及發炎情況的增加,並觀察到A群鏈球菌在感染組織中大量存在並且與內皮細胞有共定位的現象。因此進而探討內皮細胞活化標誌血管生成素-1、-2以及多功能性蛋白kallistatin與臨床運用的生理參數相關性,血管生成素-2在感染前期與C-反應蛋白有顯著正相關;kallistatin在感染後期與血小板呈現顯著正相關、與C-反應蛋白有顯著負相關,說明這兩種蛋白質具在臨床上A群鏈球菌感染後的生物指標特性。我們也針對血管生成素系統在A群鏈球菌感染內皮細胞中扮演的角色去探討,細胞實驗中,感染長時間發現血管生成素系統失調現象,感染短時間發現血管生成素-2於細胞內減少以及細胞外顯著增加的現象,而我們推測血管生成素-2的釋放可能是藉由Weibel-Palade體路徑,並發現感染後短時間細胞滲透性就有顯著改變。綜合上述,我們推測嚴重A群鏈球菌感染下,血管生成素-2及kallistatin可作為預測A群鏈球菌感染後疾病走向的生物指標。雖然在A群鏈球菌感染內皮細胞所引起的血管生成素失調被觀察到,但短時間內皮細胞滲透性升高是否真的是藉由血管生成素失調所引起的還需要進一步去釐清。
Group A Streptococcus (GAS), Streptococcus pyogenes, can cause a wide spectrum of diseases ranging from mild pharyngitis to fatal complications such as necrotizing fasciitis, sepsis, streptococcal toxic shock syndrome. Necrotizing fasciitis is the most severe invasive disease in GAS infection. It was described as rapidly muscle destruction and irreversible damage, so the diagnosis at the beginning of infection is more important. In this study, we found a large number of endothelial cell damage and inflammatory response in invasive GAS patient‘s tissue sections. GAS was observed abundantly and co-localized with endothelial cells. Therefore, we investigated the correlation between endothelial cell activation markers angiopoietin-1, -2, multifunctional protein kallistatin and clinical parameters. Angiopoietin-2 was positively correlated with C-reactive protein in the acute phase while kallistatin was positively correlated with platelet, and negatively correlated with C-reactive protein in the late phase. The results indicated that the two proteins might have potential of biomarkers for GAS infection in clinical. We further investigated the role of the angiopoietin system in the GAS-infected endothelial cells. We demonstrated that the angiopoietin system dysregulation was observed after a long-term GAS infection in vitro. However, after a short-term GAS infection, the expression of intracellular Ang-2 decreased, but the concentration of Ang-2 in the GAS-infected endothelial cell culture medium increased. We speculated that the release of angiopoietin-2 may be induced through the Weibel-Palade bodies pathway. Significantly reduction of cell permeability in a short-term GAS infection was observed as well. Taken together, we demonstrated that angiopoietin-2 and kallistatin can be used as biomarkers for predicting the progression of GAS infection. Although angiopoietin dysregulation in GAS-infected endothelial cells is observed, it deserves further study to clarify whether the increase of permeability in endothelial cell is mediated by GAS-induced angiopoietin dysregulation.
1. Lancefield RC. 1933. A SEROLOGICAL DIFFERENTIATION OF HUMAN AND OTHER GROUPS OF HEMOLYTIC STREPTOCOCCI. J Exp Med 57:571-595.
2. Stevens DL. 1992. Invasive group A streptococcus infections. Clin Infect Dis 14:2-11.
3. Guilherme L, Fae KC, Higa F, Chaves L, Oshiro SE, Freschi de Barros S, Puschel C, Juliano MA, Tanaka AC, Spina G, Kalil J. 2006. Towards a vaccine against rheumatic fever. Clin Dev Immunol 13:125-132.
4. Guilherme L, Fae KC, Oshiro SE, Tanaka AC, Pomerantzeff PM, Kalil J. 2007. T cell response in rheumatic fever: crossreactivity between streptococcal M protein peptides and heart tissue proteins. Curr Protein Pept Sci 8:39-44.
5. Robinson JH, Kehoe MA. 1992. Group A streptococcal M proteins: virulence factors and protective antigens. Immunol Today 13:362-367.
6. Dale JB, Washburn RG, Marques MB, Wessels MR. 1996. Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect Immun 64:1495-1501.
7. Tewodros W, Kronvall G. 2005. M protein gene (emm type) analysis of group A beta-hemolytic streptococci from Ethiopia reveals unique patterns. J Clin Microbiol 43:4369-4376.
8. Feito MJ, Sanchez A, Oliver MA, Perez-Caballero D, Rodriguez de Cordoba S, Alberti S, Rojo JM. 2007. Membrane cofactor protein (MCP, CD46) binding to clinical isolates of Streptococcus pyogenes: binding to M type 18 strains is independent of Emm or Enn proteins. Mol Immunol 44:3571-3579.
9. Colman G, Tanna A, Efstratiou A, Gaworzewska ET. 1993. The serotypes of Streptococcus pyogenes present in Britain during 1980-1990 and their association with disease. J Med Microbiol 39:165-178.
10. Schwartz B, Elliott JA, Butler JC, Simon PA, Jameson BL, Welch GE, Facklam RR. 1992. Clusters of invasive group A streptococcal infections in family, hospital, and nursing home settings. Clin Infect Dis 15:277-284.
11. Bisno AL, Brito MO, Collins CM. 2003. Molecular basis of group A streptococcal virulence. Lancet Infect Dis 3:191-200.
12. Su YF, Chuang WJ, Wang SM, Chen WY, Chiang-Ni C, Lin YS, Wu JJ, Liu CC. 2011. The deficient cleavage of M protein-bound IgG by IdeS: insight into the escape of Streptococcus pyogenes from antibody-mediated immunity. Mol Immunol 49:134-142.
13. Burova LA, Nagornev VA, Pigarevsky PV, Gladilina MM, Gavrilova EA, Seliverstova VG, Totolian AA, Thern A, Schalen C. 2005. Myocardial tissue damage in rabbits injected with group A streptococci, types M1 and M22. Role of bacterial immunoglobulin G-binding surface proteins. Apmis 113:21-30.
14. Wexler DE, Chenoweth DE, Cleary PP. 1985. Mechanism of action of the group A streptococcal C5a inactivator. Proc Natl Acad Sci U S A 82:8144-8148.
15. Cleary PP, Prahbu U, Dale JB, Wexler DE, Handley J. 1992. Streptococcal C5a peptidase is a highly specific endopeptidase. Infect Immun 60:5219-5223.
16. Ji Y, McLandsborough L, Kondagunta A, Cleary PP. 1996. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect Immun 64:503-510.
17. Purushothaman SS, Park HS, Cleary PP. 2004. Promotion of fibronectin independent invasion by C5a peptidase into epithelial cells in group A Streptococcus. Indian J Med Res 119 Suppl:44-47.
18. Shet A, Kaplan E, Johnson D, Cleary PP. 2004. Human immunogenicity studies on group A streptococcal C5a peptidase (SCPA) as a potential vaccine against group A streptococcal infections. Indian J Med Res 119 Suppl:95-98.
19. Bhakdi S, Tranum-Jensen J, Sziegoleit A. 1985. Mechanism of membrane damage by streptolysin-O. Infect Immun 47:52-60.
20. Sekiya K, Danbara H, Futaesaku Y. 1993. [Mechanism of pore formation on erythrocyte membrane by streptolysin-O]. Kansenshogaku Zasshi 67:736-740.
21. Betschel SD, Borgia SM, Barg NL, Low DE, De Azavedo JC. 1998. Reduced virulence of group A streptococcal Tn916 mutants that do not produce streptolysin S. Infect Immun 66:1671-1679.
22. Spaulding AR, Salgado-Pabon W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. 2013. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26:422-447.
23. Earhart CA, Vath GM, Roggiani M, Schlievert PM, Ohlendorf DH. 2000. Structure of streptococcal pyrogenic exotoxin A reveals a novel metal cluster. Protein Sci 9:1847-1851.
24. Pahlman LI, Olin AI, Darenberg J, Morgelin M, Kotb M, Herwald H, Norrby-Teglund A. 2008. Soluble M1 protein of Streptococcus pyogenes triggers potent T cell activation. Cell Microbiol 10:404-414.
25. Fearon DT, Locksley RM. 1996. The instructive role of innate immunity in the acquired immune response. Science 272:50-53.
26. Hakansson A, Bentley CC, Shakhnovic EA, Wessels MR. 2005. Cytolysin-dependent evasion of lysosomal killing. Proc Natl Acad Sci U S A 102:5192-5197.
27. Timmer AM, Timmer JC, Pence MA, Hsu LC, Ghochani M, Frey TG, Karin M, Salvesen GS, Nizet V. 2009. Streptolysin O promotes group A Streptococcus immune evasion by accelerated macrophage apoptosis. J Biol Chem 284:862-871.
28. Goldmann O, Sastalla I, Wos-Oxley M, Rohde M, Medina E. 2009. Streptococcus pyogenes induces oncosis in macrophages through the activation of an inflammatory programmed cell death pathway. Cell Microbiol 11:138-155.
29. Lin A, Loughman JA, Zinselmeyer BH, Miller MJ, Caparon MG. 2009. Streptolysin S inhibits neutrophil recruitment during the early stages of Streptococcus pyogenes infection. Infect Immun 77:5190-5201.
30. Terao Y, Yamaguchi M, Hamada S, Kawabata S. 2006. Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J Biol Chem 281:14215-14223.
31. Akesson P, Sjoholm AG, Bjorck L. 1996. Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J Biol Chem 271:1081-1088.
32. Hoe NP, Ireland RM, DeLeo FR, Gowen BB, Dorward DW, Voyich JM, Liu M, Burns EH, Jr., Culnan DM, Bretscher A, Musser JM. 2002. Insight into the molecular basis of pathogen abundance: group A Streptococcus inhibitor of complement inhibits bacterial adherence and internalization into human cells. Proc Natl Acad Sci U S A 99:7646-7651.
33. Frick IM, Akesson P, Rasmussen M, Schmidtchen A, Bjorck L. 2003. SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem 278:16561-16566.
34. Rohde M, Chhatwal GS. 2013. Adherence and invasion of streptococci to eukaryotic cells and their role in disease pathogenesis. Curr Top Microbiol Immunol 368:83-110.
35. Osterlund A, Popa R, Nikkila T, Scheynius A, Engstrand L. 1997. Intracellular reservoir of Streptococcus pyogenes in vivo: a possible explanation for recurrent pharyngotonsillitis. Laryngoscope 107:640-647.
36. Spinaci C, Magi G, Varaldo PE, Facinelli B. 2006. Persistence of erythromycin-resistant group a streptococci in cultured respiratory cells. Pediatr Infect Dis J 25:880-883.
37. Medina E, Rohde M, Chhatwal GS. 2003. Intracellular survival of Streptococcus pyogenes in polymorphonuclear cells results in increased bacterial virulence. Infect Immun 71:5376-5380.
38. Thulin P, Johansson L, Low DE, Gan BS, Kotb M, McGeer A, Norrby-Teglund A. 2006. Viable group A streptococci in macrophages during acute soft tissue infection. PLoS Med 3:e53.
39. Metzgar D, Zampolli A. 2011. The M protein of group A Streptococcus is a key virulence factor and a clinically relevant strain identification marker. Virulence 2:402-412.
40. Bessen D, Jones KF, Fischetti VA. 1989. Evidence for two distinct classes of streptococcal M protein and their relationship to rheumatic fever. J Exp Med 169:269-283.
41. Cole JN, Barnett TC, Nizet V, Walker MJ. 2011. Molecular insight into invasive group A streptococcal disease. Nat Rev Microbiol 9:724-736.
42. Luca-Harari B, Ekelund K, van der Linden M, Staum-Kaltoft M, Hammerum AM, Jasir A. 2008. Clinical and epidemiological aspects of invasive Streptococcus pyogenes infections in Denmark during 2003 and 2004. J Clin Microbiol 46:79-86.
43. Meisal R, Andreasson IK, Hoiby EA, Aaberge IS, Michaelsen TE, Caugant DA. 2010. Streptococcus pyogenes isolates causing severe infections in Norway in 2006 to 2007: emm types, multilocus sequence types, and superantigen profiles. J Clin Microbiol 48:842-851.
44. Cunningham MW. 2000. Pathogenesis of Group A Streptococcal Infections. Clin Microbiol Rev 13:470-511.
45. Su YF, Wang SM, Lin YL, Chuang WJ, Lin YS, Wu JJ, Lin MT, Liu CC. 2009. Changing epidemiology of Streptococcus pyogenes emm types and associated invasive and noninvasive infections in Southern Taiwan. J Clin Microbiol 47:2658-2661.
46. Chiang-Ni C, Wu AB, Liu CC, Chen KT, Lin YS, Chuang WJ, Fang HY, Wu JJ. 2011. Emergence of uncommon emm types of Streptococcus pyogenes among adult patients in southern Taiwan. J Microbiol Immunol Infect 44:424-429.
47. Efstratiou A. 2000. Group A streptococci in the 1990s. J Antimicrob Chemother 45 Suppl:3-12.
48. Nuwayhid ZB, Aronoff DM, Mulla ZD. 2007. Blunt trauma as a risk factor for group A streptococcal necrotizing fasciitis. Ann Epidemiol 17:878-881.
49. Stevens DL, Bryant AE. 2017. Necrotizing Soft-Tissue Infections. N Engl J Med 377:2253-2265.
50. Sturtzel C. 2017. Endothelial Cells. Adv Exp Med Biol 1003:71-91.
51. Hu G, Vogel SM, Schwartz DE, Malik AB, Minshall RD. 2008. Intercellular adhesion molecule-1-dependent neutrophil adhesion to endothelial cells induces caveolae-mediated pulmonary vascular hyperpermeability. Circ Res 102:e120-131.
52. Kumar P, Ning Y, Polverini PJ. 2008. Endothelial cells expressing Bcl-2 promotes tumor metastasis by enhancing tumor angiogenesis, blood vessel leakiness and tumor invasion. Lab Invest 88:740-749.
53. Ponnuchamy B, Khalil RA. 2008. Role of ADAMs in endothelial cell permeability: cadherin shedding and leukocyte rolling. Circ Res 102:1139-1142.
54. Lee WL, Liles WC. 2011. Endothelial activation, dysfunction and permeability during severe infections. Curr Opin Hematol 18:191-196.
55. Weir CJ, Walley RJ. 2006. Statistical evaluation of biomarkers as surrogate endpoints: a literature review. Stat Med 25:183-203.
56. van Meurs M, Kumpers P, Ligtenberg JJ, Meertens JH, Molema G, Zijlstra JG. 2009. Bench-to-bedside review: Angiopoietin signalling in critical illness - a future target? Crit Care 13:207.
57. Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY. 2000. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3'-Kinase/Akt signal transduction pathway. Circ Res 86:24-29.
58. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O'Connor DS, Li F, Altieri DC, Sessa WC. 2000. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275:9102-9105.
59. Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, Gale NW, Witzenrath M, Rosseau S, Suttorp N, Sobke A, Herrmann M, Preissner KT, Vajkoczy P, Augustin HG. 2006. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12:235-239.
60. Fagiani E, Christofori G. 2013. Angiopoietins in angiogenesis. Cancer Lett 328:18-26.
61. Kumpers P, Lukasz A, David S, Horn R, Hafer C, Faulhaber-Walter R, Fliser D, Haller H, Kielstein JT. 2008. Excess circulating angiopoietin-2 is a strong predictor of mortality in critically ill medical patients. Crit Care 12:R147.
62. Giuliano JS, Jr., Lahni PM, Harmon K, Wong HR, Doughty LA, Carcillo JA, Zingarelli B, Sukhatme VP, Parikh SM, Wheeler DS. 2007. Admission angiopoietin levels in children with septic shock. Shock 28:650-654.
63. Orfanos SE, Kotanidou A, Glynos C, Athanasiou C, Tsigkos S, Dimopoulou I, Sotiropoulou C, Zakynthinos S, Armaganidis A, Papapetropoulos A, Roussos C. 2007. Angiopoietin-2 is increased in severe sepsis: correlation with inflammatory mediators. Crit Care Med 35:199-206.
64. Kumpers P, van Meurs M, David S, Molema G, Bijzet J, Lukasz A, Biertz F, Haller H, Zijlstra JG. 2009. Time course of angiopoietin-2 release during experimental human endotoxemia and sepsis. Crit Care 13:R64.
65. Siner JM, Bhandari V, Engle KM, Elias JA, Siegel MD. 2009. Elevated serum angiopoietin 2 levels are associated with increased mortality in sepsis. Shock 31:348-353.
66. Makinde T, Murphy RF, Agrawal DK. 2006. Immunomodulatory role of vascular endothelial growth factor and angiopoietin-1 in airway remodeling. Curr Mol Med 6:831-841.
67. Chen LM, Chao L, Chao J. 1997. Adenovirus-mediated delivery of human kallistatin gene reduces blood pressure of spontaneously hypertensive rats. Hum Gene Ther 8:341-347.
68. Wang CR, Chen SY, Wu CL, Liu MF, Jin YT, Chao L, Chao J. 2005. Prophylactic adenovirus-mediated human kallistatin gene therapy suppresses rat arthritis by inhibiting angiogenesis and inflammation. Arthritis Rheum 52:1319-1324.
69. Chao J, Yin H, Yao YY, Shen B, Smith RS, Jr., Chao L. 2006. Novel role of kallistatin in protection against myocardial ischemia-reperfusion injury by preventing apoptosis and inflammation. Hum Gene Ther 17:1201-1213.
70. Gao L, Yin H, S. Smith R J, Chao L, Chao J. 2008. Role of kallistatin in prevention of cardiac remodeling after chronic myocardial infarction. Lab Invest 88:1157-1166.
71. Shen B, Hagiwara M, Yao YY, Chao L, Chao J. 2008. Salutary effect of kallistatin in salt-induced renal injury, inflammation, and fibrosis via antioxidative stress. Hypertension 51:1358-1365.
72. Shen B, Smith RS, Jr., Hsu YT, Chao L, Chao J. 2009. Kruppel-like factor 4 is a novel mediator of Kallistatin in inhibiting endothelial inflammation via increased endothelial nitric-oxide synthase expression. J Biol Chem 284:35471-35478.
73. Shen B, Gao L, Hsu YT, Bledsoe G, Hagiwara M, Chao L, Chao J. 2010. Kallistatin attenuates endothelial apoptosis through inhibition of oxidative stress and activation of Akt-eNOS signaling. Am J Physiol Heart Circ Physiol 299:H1419-1427.
74. Yin H, Gao L, Shen B, Chao L, Chao J. 2010. Kallistatin inhibits vascular inflammation by antagonizing tumor necrosis factor-alpha-induced nuclear factor kappaB activation. Hypertension 56:260-267.
75. Li P, Bledsoe G, Yang ZR, Fan H, Chao L, Chao J. 2014. Human kallistatin administration reduces organ injury and improves survival in a mouse model of polymicrobial sepsis. Immunology 142:216-226.
76. Lu SL, Tsai CY, Luo YH, Kuo CF, Lin WC, Chang YT, Wu JJ, Chuang WJ, Liu CC, Chao L, Chao J, Lin YS. 2013. Kallistatin modulates immune cells and confers anti-inflammatory response to protect mice from group A streptococcal infection. Antimicrob Agents Chemother 57:5366-5372.
77. Chao J, Schmaier A, Chen LM, Yang Z, Chao L. 1996. Kallistatin, a novel human tissue kallikrein inhibitor: levels in body fluids, blood cells, and tissues in health and disease. J Lab Clin Med 127:612-620.
78. Stadnicki A, Mazurek U, Gonciarz M, Plewka D, Nowaczyk G, Orchel J, Pastucha E, Plewka A, Wilczok T, Colman RW. 2003. Immunolocalization and expression of kallistatin and tissue kallikrein in human inflammatory bowel disease. Dig Dis Sci 48:615-623.
79. Lin WC, Lu SL, Lin CF, Chen CW, Chao L, Chao J, Lin YS. 2013. Plasma kallistatin levels in patients with severe community-acquired pneumonia. Crit Care 17:R27.
80. Ye FC, Zhou FC, Nithianantham S, Chandran B, Yu XL, Weinberg A, Gao SJ. 2013. Kaposi's sarcoma-associated herpesvirus induces rapid release of angiopoietin-2 from endothelial cells. J Virol 87:6326-6335.
81. Valentijn KM, Sadler JE, Valentijn JA, Voorberg J, Eikenboom J. 2011. Functional architecture of Weibel-Palade bodies. Blood 117:5033-5043.
82. Romani de Wit T, de Leeuw HP, Rondaij MG, de Laaf RT, Sellink E, Brinkman HJ, Voorberg J, van Mourik JA. 2003. Von Willebrand factor targets IL-8 to Weibel-Palade bodies in an endothelial cell line. Exp Cell Res 286:67-74.
83. Bhattacharya R, Sinha S, Yang SP, Patra C, Dutta S, Wang E, Mukhopadhyay D. 2008. The neurotransmitter dopamine modulates vascular permeability in the endothelium. J Mol Signal 3:14.
84. Gotsch U, Borges E, Bosse R, Boggemeyer E, Simon M, Mossmann H, Vestweber D. 1997. VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 110 ( Pt 5):583-588.
85. Carbonetti F, Cremona A, Carusi V, Guidi M, Iannicelli E, Di Girolamo M, Sergi D, Clarioni A, Baio G, Antonelli G, Fratini L, David V. 2016. The role of contrast enhanced computed tomography in the diagnosis of necrotizing fasciitis and comparison with the laboratory risk indicator for necrotizing fasciitis (LRINEC). Radiol Med 121:106-121.
86. Doshi HK, Thambiah J, Chan CL, Nga ME, Tambyah PA. 2009. Necrotising fasciitis caused by adulterated traditional Asian medicine: a case report. J Orthop Surg (Hong Kong) 17:223-226.
87. Lu SL, Kuo CF, Chen HW, Yang YS, Liu CC, Anderson R, Wu JJ, Lin YS. 2015. Insufficient Acidification of Autophagosomes Facilitates Group A Streptococcus Survival and Growth in Endothelial Cells. MBio 6:e01435-01415.
88. Svensson L, Baumgarten M, Morgelin M, Shannon O. 2014. Platelet activation by Streptococcus pyogenes leads to entrapment in platelet aggregates, from which bacteria subsequently escape. Infect Immun 82:4307-4314.
89. Luz Fiusa MM, Costa-Lima C, de Souza GR, Vigorito AC, Penteado Aranha FJ, Lorand-Metze I, Annichino-Bizzacchi JM, de Souza CA, De Paula EV. 2013. A high angiopoietin-2/angiopoietin-1 ratio is associated with a high risk of septic shock in patients with febrile neutropenia. Crit Care 17:R169.
90. Chen S, Guo L, Chen B, Sun L, Cui M. 2013. Association of serum angiopoietin-1, angiopoietin-2 and angiopoietin-2 to angiopoietin-1 ratio with heart failure in patients with acute myocardial infarction. Exp Ther Med 5:937-941.
91. Lowenstein CJ, Morrell CN, Yamakuchi M. 2005. Regulation of Weibel-Palade body exocytosis. Trends Cardiovasc Med 15:302-308.
92. Siemens N, Patenge N, Otto J, Fiedler T, Kreikemeyer B. 2011. Streptococcus pyogenes M49 plasminogen/plasmin binding facilitates keratinocyte invasion via integrin-integrin-linked kinase (ILK) pathways and protects from macrophage killing. J Biol Chem 286:21612-21622.
93. Ozeri V, Rosenshine I, Mosher DF, Fassler R, Hanski E. 1998. Roles of integrins and fibronectin in the entry of Streptococcus pyogenes into cells via protein F1. Mol Microbiol 30:625-637.
94. Yamaguchi M, Terao Y, Kawabata S. 2013. Pleiotropic virulence factor - Streptococcus pyogenes fibronectin-binding proteins. Cell Microbiol 15:503-511.
95. Tsai WH, Chang CW, Lin YS, Chuang WJ, Wu JJ, Liu CC, Tsai PJ, Lin MT. 2008. Streptococcal pyrogenic exotoxin B-induced apoptosis in A549 cells is mediated through alpha(v)beta(3) integrin and Fas. Infect Immun 76:1349-1357.
96. Holash J, Wiegand SJ, Yancopoulos GD. 1999. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18:5356-5362.
97. Yoshiji H, Kuriyama S, Noguchi R, Yoshii J, Ikenaka Y, Yanase K, Namisaki T, Kitade M, Uemura M, Masaki T, Fukui H. 2005. Angiopoietin 2 displays a vascular endothelial growth factor dependent synergistic effect in hepatocellular carcinoma development in mice. Gut 54:1768-1775.
98. Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM. 1998. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273:18514-18521.
99. Augustin HG, Koh GY, Thurston G, Alitalo K. 2009. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165-177.
100. Gavard J, Patel V, Gutkind JS. 2008. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 14:25-36.
101. Gao G, Shao C, Zhang SX, Dudley A, Fant J, Ma JX. 2003. Kallikrein-binding protein inhibits retinal neovascularization and decreases vascular leakage. Diabetologia 46:689-698.
102. Zhu B, Lu L, Cai W, Yang X, Li C, Yang Z, Zhan W, Ma JX, Gao G. 2007. Kallikrein-binding protein inhibits growth of gastric carcinoma by reducing vascular endothelial growth factor production and angiogenesis. Mol Cancer Ther 6:3297-3306.
103. Yuan HT, Khankin EV, Karumanchi SA, Parikh SM. 2009. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol 29:2011-2022.
104. David S, Kumpers P, van Slyke P, Parikh SM. 2013. Mending leaky blood vessels: the angiopoietin-Tie2 pathway in sepsis. J Pharmacol Exp Ther 345:2-6.
105. Cho CH, Kammerer RA, Lee HJ, Steinmetz MO, Ryu YS, Lee SH, Yasunaga K, Kim KT, Kim I, Choi HH, Kim W, Kim SH, Park SK, Lee GM, Koh GY. 2004. COMP-Ang1: a designed angiopoietin-1 variant with nonleaky angiogenic activity. Proc Natl Acad Sci U S A 101:5547-5552.
106. Han S, Lee SJ, Kim KE, Lee HS, Oh N, Park I, Ko E, Oh SJ, Lee YS, Kim D, Lee S, Lee DH, Lee KH, Chae SY, Lee JH, Kim SJ, Kim HC, Kim S, Kim SH, Kim C, Nakaoka Y, He Y, Augustin HG, Hu J, Song PH, Kim YI, Kim P, Kim I, Koh GY. 2016. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med 8:335ra355.
校內:2023-08-01公開