簡易檢索 / 詳目顯示

研究生: 陳忠彥
Chen, Chung-Yen
論文名稱: 以決策樹與迴歸分析法預測嘉義科學園區周邊的房價
Decision Tree and Regression Analysis for Forecasting the House Prices nearby the Chiayi Science Park
指導教授: 潘南飛
Pan, Nang-Fei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 184
中文關鍵詞: 決策樹線性回歸科學園區台積電房價預測
外文關鍵詞: Decision Tree, Linear Regression, Science Park, TSMC, Housing Price Forecast
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 嘉義縣向來以傳統農業發展為主,然自民國109年12月19日,時任行政院長蘇貞昌正式宣布於嘉義縣設立科學園區後,地方產業結構迎來重大轉折。其後,於民國113年3月18日,時任行政院副院長鄭文燦宣布,台灣積體電路製造股份有限公司(簡稱台積電,俗稱「護國神山」)將於嘉義科學園區設立先進封裝廠(CoWoS),此舉被視為嘉義縣房市發展的重要里程碑。
    台積電過去於新竹科學園區及台南科學園區設廠,已為地方帶來顯著的經濟效益與房價成長。另於2021年10月14日之財報會議中,台積電亦宣布赴日本熊本設立半導體工廠。日本政府為配合投資計畫,積極推動相關公共建設,包括學校、車站、道路與住宅等設施。熊本原為日本典型農業縣市,因高科技產業進駐,當地薪資水平快速提升,並帶動地區房價與物價上漲,顯示半導體產業落腳能有效促進區域經濟與房市發展。對照臺灣新竹及台南的經驗,嘉義科學園區未來是否能重現類似榮景,亦備受期待。
    另一方面,內政部自民國101年8月起推動不動產交易實價登錄制度,並設立「不動產交易實價查詢服務網」,提供透明化資訊予社會大眾。本研究所蒐集之資料,均來源於該平台或其他公開數據,並運用決策樹與線性迴歸模型建構嘉義科學園區周邊房價之預測模式。
    然而,自民國109年疫情爆發以來,營建材料、土地成本及人力價格逐步攀升,並伴隨政府自民國110年12月起陸續實施多波「打炒房」政策,至民國113年9月更推動被稱為「史上最嚴」的第七波管制措施,導致房市交易量明顯萎縮,較113年度同期下降約六至八成。綜上,本研究將以嘉義科學園區為核心,探討其對周邊地區房價的影響,並透過統計模型預測未來發展趨勢。

    Chiayi County has traditionally been characterized by an agriculture-based economy. However, a major industrial transformation was initiated on December 19, 2020 (Minguo 109), when then-Premier Su Tseng-chang officially announced the establishment of a science park in Chiayi County. Subsequently, on March 18, 2024 (Minguo 113), then–Vice Premier Cheng Wen-tsan declared that Taiwan Semiconductor Manufacturing Company (TSMC), widely known as the “guardian of the nation,” would set up an advanced packaging plant (CoWoS) in the Chiayi Science Park. This announcement marked a milestone in the development of the local housing market.
    TSMC has previously established plants in both the Hsinchu Science Park and the Tainan Science Park, generating significant economic benefits and considerable increases in housing prices in these regions. In addition, during its quarterly earnings call on October 14, 2021, TSMC announced plans to build a semiconductor plant in Kumamoto, Japan. In response, the Japanese government actively supported the investment by developing schools, railway stations, roads, housing, and other infrastructure. Kumamoto, originally an agriculture-oriented prefecture, quickly experienced rising wage levels and housing prices due to the influx of high-tech industries. This phenomenon mirrors the experiences of Hsinchu and Tainan in Taiwan, and raises expectations that the Chiayi Science Park may follow a similar developmental trajectory.
    Meanwhile, since August 2012 (Minguo 101), the Ministry of the Interior has implemented the “Actual Price Registration” system for real estate transactions and has established a public online platform to improve market transparency. The data used in this study are obtained from this platform and other publicly available sources. Decision tree and linear regression models are employed to construct prediction frameworks for housing prices surrounding the Chiayi Science Park.
    However, since the outbreak of the COVID-19 pandemic in 2020 (Minguo 109), the costs of construction materials, land, and labor have steadily increased. Beginning in December 2021 (Minguo 110), the government has successively launched multiple waves of housing market cooling measures, culminating in the seventh and most stringent round of regulations in September 2024 (Minguo 113). As a result, transaction volumes have sharply declined, dropping by approximately 60–80% compared with the same period in 2024. In this context, this study focuses on analyzing the impact of the Chiayi Science Park on local housing prices and employs statistical modeling to forecast future housing market trends.

    摘要IV 誌謝X 目錄XI 表目錄XIV 圖目錄XVI 第一章緒論1 1.1研究背景與動機1 1.1.1研究背景1 1.1.2研究動機2 1.2研究目的與其重要性2 1.2.1研究目的2 1.2.2研究重要性3 1.3研究問題與假設3 1.4研究範圍與限制3 1.5研究流程與架構4 1.6預期結果與意義6 第二章文獻回顧7 2.1查詢房價資訊-內政部不動產交易實價查詢服務網7 2.1.1實價登錄1.0及1.5 7 2.1.2實價登錄2.0 8 2.2房屋的估價方法9 2.3資料探勘(Data Mining)11 2.3.1資料探勘模式11 2.3.2資料探勘流程12 2.3.3模型比較13 2.3.4房價研究之應用13 2.3.5相關文獻整理14 2.4決策樹(Decision Tree)15 2.4.1決策樹模型16 2.4.2決策樹演算法16 2.4.3過度擬合(Overfitting)17 2.4.4剪枝(Pruning) 17 2.4.5實務應用案例18 2.4.6以決策樹房價預測案例18 2.4.7決策樹小結19 2.4.8相關文獻整理19 第三章研究方法21 3.1流程架構21 3.2資料取得及來源24 3.2.1內政部實價登錄網站資料所引用之數據24 3.2.2相關參考政府及民間機構等調查指數26 3.3決策樹演算法模型29 3.4線性回歸演算法模型30 3.5衡量指標30 3.5.1相關分析30 3.5.2均方根誤差(Root Mean Squared Error,RMSE) 31 第四章研究分析與討論32 4.1研究地區簡介32 4.2分析選取之使用變數定義35 4.3資料代號設定40 4.4決策樹CART演算法模型41 4.4.1 CART模型建構41 4.4.2模型參數設定42 4.4.3全數據模型效能評估與預測結果42 4.4.4台積電設置前數據模型效能評估與預測結果60 4.4.5台積電設置後數據模型效能評估與預測結果60 4.5線性回歸(Linear Regression)分析72 4.5.1執行步驟72 4.5.2參數設定73 4.5.3評估與預測結果73 4.5.4結果分析80 4.6預測結果總結83 4.7以決策樹CART演算法與回歸方程式預測未來三年之房價84 4.7.1假設變數84 4.7.2預測2025年10月至2028年12月房價94 4.7.3 預測結果總結99 第五章結論與建議101 5.1結論與貢獻101 5.2後續研究與建議102 參考文獻104 附錄、研究數據106

    1.王尹暘(2022)。以決策樹預測台南世紀之門房價[碩士論文,國立成功大學土木工程學系研究所]。
    2.內政部不動產交易實價查詢服務網.(n.d.). Available from https://lvr.land.moi.gov.tw/
    3.內政部不動產資訊平台網站.(n.d.). Available from https://pip.moi.gov.tw/Publicize/Info/E2010
    4.中華民國中央銀行全球資訊網.(n.d.). Available from https://www.cbc.gov.tw/tw/cp-528-1079-B4682-1.html
    5.中華民國統計資訊網. (n.d.). Available from https://nstatdb.dgbas.gov.tw/dgbasall/webMain.aspx?k=main
    6.中華民國不動產仲介經紀商業同業公會全國聯合會. (n.d.). Available from https://www.taiwanhouse.org.tw/a/blogs/show/3092702
    7.公共工程雲端服務網. (n.d.). Available from https://pcic.pcc.gov.tw/pwc-web/
    8.台灣積體電路製造股份有限公司(TSMC)網站. (n.d.). Available from https://www.tsmc.com/chinese  
    9.行政院主計處網站. (n.d.). Available from https://www.dgbas.gov.tw/
    10.李祖源(2024)。運用決策樹和類神經網路預測台灣鋼筋價格[碩士論文,國立成功大學土木工程學系研究所]。
    11.周岱樺(2024)。實價登錄2.0對預售屋市場的影響-以嘉義市為例[碩士論文,國立嘉義大學管理學院碩士在職專班]。
    12.胡祺嚴(2025)。以隨機森林法預測臺南市桂田磐古社區之房價[碩士論文,國立成功大學土木工程學系研究所]。
    13.信義房屋房訊知識網.(n.d.). Available from https://www.sinyinews.com.tw/quarterly
    14.財經M坪方網. (n.d.). Available from https://www.macromicro.me/collections/15/tw-housing-relative/1396/tw-buildings
    15.陳證中(2025)。台積電設廠對嘉義縣市房價之影響[碩士論文,南臺科技大學企業管理系碩士班]。
    16.國泰建設網站.(n.d.). Available from https://www.cathay-red.com.tw/tw/About/House
    17.國立政治大學不動產研究中心網站.(n.d.). Available from https://rer.nccu.edu.tw/  
    18.黃智穎(2021)。台南市成大城房價之預測[碩士論文,國立成功大學土木工程學系研究所]。
    19.樊俊文(2023)。梯度提升決策樹回歸模型在房價預測中的性能比較與優化[碩士論文,長庚大學商管專業學院碩士學位學程在職專班資訊管理組]。
    20.樂居網站.(n.d.). Available from https://www.leju.com.tw/
    21.維百科網站. (n.d.). Available from https://zh.wikipedia.org/zh-tw/%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98
    22.劉得呈(2025)。以決策樹與類神經網路預測280 kgf/cm²預拌混凝土之價格 [碩士論文,國立成功大學土木工程學系研究所]。
    23.黃智穎(2021)。台南市成大城房價之預測[碩士論文,國立成功大學土木工程學系研究所]。
    24.樊俊文(2023)。梯度提升決策樹回歸模型在房價預測中的性能比較與優化[碩士論文,長庚大學商管專業學院碩士學位學程在職專班資訊管理組]。
    25.591房屋交易網.(n.d.). Available from https://www.591.com.tw/

    QR CODE