簡易檢索 / 詳目顯示

研究生: 林威辰
Lin, Wei-Chen
論文名稱: 鍶同位素地層學應用於黃羊山碳酸鹽蓋層年代推估
Application of strontium isotope stratigraphy to estimating age of cap carbonate from Huangyangshan
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 49
中文關鍵詞: 鍶同位素海水線SPICE
外文關鍵詞: Sr isotope, seawater strontium isotope curve, SPICE
相關次數: 點閱:88下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 沉積年代較古老的樣品因保存不易,樣品量稀少且資訊較不充分,但若能藉由高精密度的質譜技術,使用少量樣品獲取資訊,便能對古環境的研究有所助益。當樣品缺乏絕對定年的資料時,可以使用鍶同位素海水線輔助判斷樣品對應的地層年代,本研究共有三組樣品,其中兩組是還沒有定年資料的樣品,分別來自藍田鎮及黃羊山,樣品對應時代分別為新元古代及寒武紀,黃羊山的樣品有記錄到寒武紀末期的碳同位素正異常事件(SPICE),另一組來自南橫公路,樣品對應年代為中新世至始新世,本研究嘗試將這三組樣品對應至鍶同位素海水線,來判斷樣品對應的地層年代。本研究使用ICP-OES及ICP-MS測量樣品主量及微量元素濃度,南橫樣品Sr濃度從1.1ppm – 206.4ppm,,黃羊山樣品Sr濃度從298 – 597ppm。為避免樣品雜質影響87Sr/86Sr同位素比值,本研究使用醋酸淋洗出樣品的碳酸鹽相,並針對不同濃度醋酸淋洗出的樣品性質差異做比較,發現最適合淋洗樣品的醋酸濃度約為1% (0.18N)。淋洗完的碳酸鹽相樣品經離子交換樹脂純化過後,使用多接收器感應耦合電漿質譜儀測量樣品87Sr/86Sr同位素比值,南橫樣品的87Sr/86Sr同位素比值分布從0.70828–0.71587,和同時代的鍶同位素海水線相比,比值過高,再從元素濃度去評估樣品是否有受後期成岩作用影響,樣品Mn/Sr及Mg/Ca皆顯示已受後期成岩作用影響,而將樣品的87Sr/86Sr同位素比值和全岩樣品測得的值對比,可再將其分成廬山層和畢祿山層做討論,畢祿山層樣品和全岩87Sr/86Sr同位素比值接近,指示全岩可能受白雲岩化作用,廬山層樣品和全岩87Sr/86Sr同位素比值相差較多,可能是受其他變質作用影響。黃羊山樣品的87Sr/86Sr同位素比值分布從0.70919–0.70957,雖其元素濃度檢驗結果顯示,樣品未受成岩作用影響,但仍有三個樣品值過高,且皆分布在Sr濃度較低的樣品,因此檢驗成岩作用時,可能需要額外考慮樣品Sr濃度,剩下的樣品對應至鍶同位素海水線,可以推測樣品年代大約在497-500 Ma之間。寒武紀末期時,海洋處於缺氧且上下層水不交換的狀態,造成生物滅絕事件,而鍶同位素海水線則指示當時有海進事件,因此,海進事件可能使得缺氧水範圍擴大,造成生物滅絕更嚴重。最後,本研究部分樣品測得之87Sr/86Sr同位素比值是偏高的,原因可能是沉積環境並非開放性大洋,而是淺海或邊緣海。

    For the reconstruction of paleoenvironment, this study collected samples from Lantian, Southern Cross-Island Provincial Highway (SC), and Huangyangshan (HYS) , try to estimate age from carbonate phase in samples. By measuring 87Sr/86Sr ratios from original carbonate phase from samples, and correspond 87Sr/86Sr values to strontium isotope seawater curve, we can estimate the age of samples. First, we used acetic acid to leach carbonate phase from samples, then measure concentration of elements of samples by ICP-OES and ICP-MS, and we could determine which samples preserve their original information from their element ratios.Then we measured 87Sr/86Sr ratios of samples by MC-ICP-MS, corrected data using SSB method. 87Sr/86Sr ratios of SC samples are higher then expected. Due to element ratios measured before, we surmise it may caused by diagenesis. 87Sr/86Sr ratios of HYS samples can correspond to strontium isotope seawater curve, and indicate age about 497 – 500 Ma. But there are still some samples have higher 87Sr/86Sr ratios. We have determined HYS samples preserved their original isotope signatures, so the higher value of 87Sr/86Sr ratios may indicate HYS samples were deposited in shallow sea or marginal sea . This study conclude that SC samples have affected by diagenetic effect ,and HYS samples may deposited in shallow sea or marginal sea.
    Key words : Sr isotope , seawater strontium isotope curve, SPICE

    1.序論...........1 1-1. 鍶同位素海水線.........1 1-2. 研究目的..........5 2.採樣地點............7 2-1.藍田鎮...........7 2-2.南橫公路..........8 2-3.黃羊山...........9 3.研究方法...........13 3-1.研磨、製作薄片.........13 3-2.淋洗碳酸鹽相..........14. 3-3.測量濃度..........15 3-4.純化所需元素..........16 3-5.測量樣品同位素比值.........17 4.結果.............22 4-1.藍田鎮...........22 4-2.南橫公路..........24 4-3.黃羊山...........26 5.討論.............30 5-1.成岩作用檢驗..........30 5-1-1.南橫樣品檢驗.........30 5-1-2.黃羊山樣品檢驗........34 5-2.南橫公路樣品87Sr/86Sr同位素比值與海水線關係.....38 5-3.黃羊山樣品87Sr/86Sr同位素比值與海水線關係....40 5-4.87Sr/86Sr同位素比值應用與解釋......43 6.結論............45 7.參考資料............46

    何春蓀,(1986) 台灣地質圖概論-台灣地質圖說明書
    洪崇勝、陳國航、林俊宏(2011)臺灣北部橫貫公路低度變質岩之岩石磁學兼論雪
    山山脈與中央山脈之地層對比。經濟部中央地質調查所特刊,25,167-179
    胡作维、李云、李北康、黄思静、韓信. (2015) 顯生宙以來海水鍶同位素组成研究
    的回顧與進展。地球科學進展, 30(1), 37-49.
    Banner, J. L. (2004). Radiogenic isotopes: systematics and applications to earth surface
    processes and chemical stratigraphy. Earth-Science Reviews,65(3), 141-194.
    Bailey, T.R., McArthur, J.M., Prince, H., & Thirlwall, M.F. (2000). Dissolution methods
    for strontiumisotope stratigraphy: Whole rock analysis. Chemical Geology, 167 (3-4), 313-319.
    Bryant, J.D., Jones, D.S., & Mueller, P.A., (1995). Influence of freshwater flux on 87Sr/86Sr
    chronostratigraphy in marginal marine environments and dating of vertebrate and invertebrate faunas. Journal of Paleontology, 69, 1-6.
    Cowan, C.A., Fox,D.L., Runkel, A.C., & Saltzman,M.R., (2005). Terrestrial-marine carbon
    cycle coupling in ∼ 500-m.y.-old phosphatic brachiopods Geology, 33 , 661–664
    Denison, R.E., Koepnick, R.B., Burke, W.H., & Hetherington, E.A., (1998). Construction
    of the Cambrian and Ordovician seawater 87Sr/86Sr curve. Chemical Geology 152, 325-340..
    Derry, L.A., Brasier, M.D., Corfield, R.M., Rozanov, A., Y, & Zhuravlev, A., Y, (1994). Sr
    and C isotope in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’. Earth and Planetary Science Letters, 128, 671-681.
    Ebneth, S., Shields, G.A., Veizer, J., Miller, J.F., & Shergold, J.H., (2001). Highresolution
    strontium isotope stratigraphy across the Cambrian-Ordovician transition. Geochimica et Cosmochimica Acta, 65, 2273-2292.
    Galindo, C., Casquet, C., Rapela, C., Pankhurst, R.J., Baldo, E., & Saavedra, J., (2004). Sr,
    C and O isotope geochemistry and stratigraphy of Precambrian and lower Paleozoic carbonate sequences from the Western Sierras Pampeanas of Argentina: tectonic implications. Precambrian Research, 131, 55–71
    Gao, G., & Land, L.S., (1991). Geochemistry of the Cambro-Ordovician Arbuckle
    Limestone, Oklahoma: Implications for diagenetic 18O alteration and secular 13C and 87Sr/86Sr variation. Geochimica et Cosmochimica Acta. 55, 2911-2920.
    Gill, B. C., Lyons, T. W., Young, S. A., Kump, L. R., Knoll, A. H., & Saltzman, M. R.
    (2011). Geochemical evidence for widespread euxinia in the later Cambrian ocean. Nature, 469(7328), 80-83.
    Halverson, G.P., Dudas, F.O., Maloof, A.C., & Bowring, S.A., (2007). Evolution of the
    87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology. 256, 103-129.
    Horng, C.S. & Roberts, A.P. (2006). Authigenic or detrital origin of pyrrhotite in
    sediments? Resolving a paleomagnetic conundrum. Earth Planet. Sci. Lett., 241,
    750-762
    Jones, C. E., Jenkyns, H. C., & Hesselbo, S. P. (1994). Strontium isotopes in Early Jurassic
    seawater. Geochimica et Cosmochimica Acta, 58, 1285–1301
    Kouchinsky, A., Bengtson, S., Gallet, Y., Korovnikov, I., Pavlov, V., Runnegar, B., Shields,
    G.A., Veizer, J., Young, E., & Ziegler, K., (2008). SPICE excursion in Siberia: A combined carbon-oxygen-strontium isotope and magnetostratigraphy study of the upper Middle Cambrianlowermost Ordovician Kulyumbe river section, northwestern Siberian platform. Geological Magazine, 145, 609-622.
    Krabbenho¨ ft, A., Eisenhauer, A., Bo¨hm, F., Vollstaedt, H., Fietzke, J., Liebetrau, V.,
    Augustin, N., Peucker-Ehrenbrink, B., Mu¨ ller, M.N., Horn, C., Hansen, B.T., Nolte, N., & Wallmann, K., (2010). Constraining the marine strontium budget with natural strontium isotope fractionations (87Sr/86Sr*, 88/86Sr) of carbonates, hydrothermal solutions and river waters. Geochimica et Cosmochimica Acta, 74, 4097-4109
    Martin, E.E., & Macdougall, J.D., (1995). Sr and Nd isotopes at the Permian/ Triassic
    boundary: A record of climate change. Chemical Geology, 125,73-99.
    McArthur, J.M., & Howarth, R.J., (2004). Sr-isotope stratigraphy. In: Gradstein, F.M.,
    Ogg, J.G., ans Smith, A.G. (Eds.), A Geological Timescale 2004. Cambridge University Press, Cambridge, p. 589.
    McArthur,J.M., Howarth,R.J., & Shields,G.A. (2012). Strontium isotope stratigraphy F.M.
    Gradstein, J.G. Ogg, M. Schmitz, G. Ogg (Eds.), The Geologic Time Scale, vol. 1, Elsevier, Amsterdam (2012), p. 127–144
    Montañez, I. P., Banner, J. L., Osleger, D. A.; Borg, L. E., & Bosserman, P. J. (1996).
    Integrated Sr isotope variations and sea level history of middle to upper Cambrian platform carbonates: implications for the evolution of Cambrian seawater 87Sr/86Sr. Geology, 24, 917–920
    Montañez, I.P., Osleger, D.A., Banner, J.L., Mack, L.E., & Musgrove, M., (2000).
    Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today, 10, 1-7.
    Nohda, S., Wang, B. S., You, C. F., Isozaki, Y., Uchio, Y., Buslov, M. M., & Maruyama, S.
    (2013). The oldest (Early Ediacaran) Sr isotope record of mid-ocean surface seawater: Chemostratigraphic correlation of a paleo-atoll limestone in southern Siberia. Journal of Asian Earth Sciences, 77, 66-76.
    Ng, T. W., Yuan, J. L.,& Lin, J. P., (2014). The North China Steptoean Positive Carbon
    Isotope Event: New insights towards Understanding a Global Phenomenon. Geobios, 47(6), 371–387
    Palmer.M.R. and Elderfield.H. (1985). Sr isotope composition of sea water over the past 75
    Myr. Nature, 314, 526-528
    Qing, H., Barnes, C.R., Buhl, D., & Veizer, J., (1998). The strontium isotopic composition
    of Ordovician and Silurian brachiopods and conodonts: Relationships to geological events and implications for coeval seawater. Geochimica et Cosmochimica Acta, 62, 1721-1723
    Saltzman, M. R., Young, S. A., Kump, L. R., Gill, B. C., Lyons, T. W., & Runnegar, B.
    (2011). Pulse of atmospheric oxygen during the late Cambrian.Proceedings of the National Academy of Sciences, 108(10), 3876-3881.
    Saltzman, M. R., Edwards, C. T., Adrain, J. M., & Westrop, S. R. (2015). Persistent oceanic
    anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. Geology, 43(9), 807-810.
    Sawaki, Y., Ohno, T., Tahata, M., Komiya, T., Hirata, T., Maruyama, S., Windley, B.F.,
    Han, J., Shu, D., & Li, Y., (2010). The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Research, 176, 46-64.
    Servais, T., Lehnert, O., Li, J. U. N., Mullins, G. L., Munnecke, A., Nuetzel, A., & Vecoli,
    M. (2008). The Ordovician Biodiversification: revolution in the oceanic trophic chain. Lethaia, 41(2), 99-109.
    Sibley D. F., Nordeng S. H. & Borkowski M. L. (1994) Dolomitization kinetics in
    hydrothermal bombs and natural settings. J. Sediment. Res. 64, 630–637
    Veizer, J., Buhl, D., Diener, A., Ebneth, S., Podlaha, O.G., Bruckschen, P., Jasper, T.,
    Korte, C., Schaaf, M., Ala, D., & Azmy, K., (1997). Strontium isotope stratigraphy: Potential resolution and event correlation. Palaeogeography, Palaeoclimatology, Palaeoecology. 132, 65-77.
    Vérard,C., Hochard,C., Baumgartner,P.O., & Stampfli,G.M., (2015). 3D palaeogeographic
    reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations Journal of Palaeogeography, 4 (1), 64-84
    Vollstaedt,H., Eisenhauer,A., Wallmann,K., Böhm,F., Fietzke,J., Liebetrau,V.,
    Krabbenhöft,A., Farkaš,J., Tomašových,A., Raddatz,J., & Veizer,J., (2014). The Phanerozoic δ88/86Sr record of seawater: new constraints on past changes in oceanic carbonate fluxes Geochim. Cosmochim. Acta, 128, 249–265
    Wotte, T., Alvaro, J.-J., Shields, G.A., Brown, B., Brasier, M.D., & Veizer, J., (2007). High
    resolution C-, O- and Sr-isotope stratigraphy across the Lower-Middle Cambrian transition of the Cantabrian Mountains (Spain) and the Montagne Noire (France), West Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology. 256, 47-70.

    下載圖示 校內:2020-07-01公開
    校外:2022-07-01公開
    QR CODE