簡易檢索 / 詳目顯示

研究生: 聶榮佑
Nieh, Rong-Yu
論文名稱: 以氧化鋅奈米線與奈米盤製作感測元件
Fabrication of Sensor Devices Using Zinc Oxide Nanowires and Nanodisks
指導教授: 陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 氧化鋅水熱法奈米線奈米盤乙醇氣體感測器
外文關鍵詞: ZnO, hydrothermal, nanowires, nanodisks, ethanol gas sensor
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為三個部分,第一部分為製作氧化鋅摻雜鋁(Al doped
    ZnO, AZO)薄膜型乙醇氣體感測器,及氧化鋅奈米線(ZnO nanowires, ZnO NWs)與AZO 薄膜複合型元件。由於奈米線與薄膜相比,具有較高的表
    面積/體積比(surface-to-volume),因此對乙醇感測之靈敏度較高。
    第二部分為以矽基板製作氧化鋅奈米線氣體感測器,分別透過不同條件的熱處理,探討氧化鋅奈米線中的缺陷濃度,及其對氣體感測之影響;改變水熱法前驅物濃度,形成不同粗細之氧化鋅奈米線,並觀察其對感測特性的影響,亦製作不同維度的奈米結構,探討不同的氧化鋅表面形貌對氣體感測之影響;此外,也藉由添加銀奈米粒子(Ag nanoparticles, Ag NPs)以改善氧化鋅奈米線乙醇氣體感測器特性。
    第三部分為製作全透明氧化鋅氣體感測器,以康寧玻璃為基板,採用ZnO NWs 與AZO 薄膜複合型元件作為主要架構,並結合於矽基板一系列的研究,選擇以Ag NPs 修飾ZnO NWs 的表面,製作出具有高靈敏度,且低響應時間和回復時間的透明乙醇氣體感測器。

    There are three main topics in this study. In the first part, studies of aluminum-doped zinc oxide (AZO) thin film ethanol gas sensor, and zinc oxide nanowires (ZnO NWs) and AZO thin film composite device for presented. As compared nanowires with film, nanowires have higher surface-to-volume ratio, so the sense of ethanol sensitivity is higher.
    In the second part, preparation of the ZnO NWs gas sensors on silicon substrate is described, including the investigation of the defect concentration of ZnO NWs after annealing and its impact on gas sensing, observation of the
    effect of diameter of ZnO NWs prepared under different precursor concentration on the sensing properties. Also different nanostructures of ZnO are produced to explore the effect of geometry on the properties; and silver nanoparticles (Ag NPs) are deposited on the surface of the ZnO nanowires to improve ethanol gas sensor properties.
    The third part describes the fabrication of transparent ZnO ethanol gas sensor with high sensitivity and short response time and recovery time. The same method of preparing ZnO NWs and AZO thin film as mentioned there is used but using the Corning glass as the substrate instead of silicon. And ZnO NWs surface is deposited with Ag NPs.

    中文摘要............................................................................................................I 英文摘要.......................................................................................................... II 致謝 ................................................................................................................. III 目錄 .................................................................................................................IV 表目錄 ..........................................................................................................VIII 圖目錄 .............................................................................................................IX 第一章 緒論.....................................................................................................1 1-1 前言.....................................................................................................1 1-2 氣體感測器種類.................................................................................2 1-3 研究動機.............................................................................................5 第二章 理論基礎與文獻回顧.........................................................................6 2-1 氧化鋅的性質.....................................................................................6 2-1-1 氧化鋅晶體結構......................................................................6 2-1-2 氧化鋅的缺陷..........................................................................7 2-2 水熱法成長氧化鋅奈米線.................................................................9 2-3 金屬氧化物半導體氣體感測器介紹...............................................10 2-3-1 氣體感測器工作原理............................................................ 11 2-3-2 氣體感測器感測機制............................................................13 2-3-2-1 離子吸附機制.....................................................................14 2-3-2-2 氧空缺機制(Oxygen-Vacancy Model)..........................17 2-3-3 影響氣體感測器之重要參數................................................19 第三章 實驗方法與步驟...............................................................................24 3-1 實驗流程...........................................................................................24 3-2 實驗設備...........................................................................................25 3-2-1 光罩對準機(Mask aligner) ...............................................25 3-2-2 電子束蒸鍍機(Electron-beam evaporation).....................27 3-2-3 電漿濺鍍系統........................................................................28 3-3 實驗材料...........................................................................................29 3-3-1 基板材料.................................................................................29 3-3-2 有機材料.................................................................................29 3-3-2 無機材料.................................................................................30 3-3-3 金屬材料.................................................................................30 3-3-4 基板清洗溶劑及實驗氣體....................................................30 3-4 實驗步驟...........................................................................................31 3-4-1 以氧化鋅奈米線改善薄膜型氣體感測器之特性................31 3-4-2 以水熱法製作氧化鋅奈米線氣體感測器............................32 3-4-2-1 熱處理對於氧化鋅的影響.................................................34 3-4-2-2 以不同前驅物濃度製作氧化鋅奈米線元件.....................34 3-4-2-3 二維氧化鋅奈米結構應用於乙醇氣體感測器.................35 3-4-2-4 銀奈米粒子改善氧化鋅奈米線乙醇氣體感測器特性.....35 3-4-3 全透明氧化鋅奈米線氣體感測器之製作............................35 3-5 實驗鑑定...........................................................................................37 3-5-1 掃描式電子顯微鏡(Scanning electron microscopy, SEM) ...........................................................................................................37 3-5-2 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) ...........................................................................................................38 3-5-3 X 光繞射儀(X-ray diffractometer, XRD)..........................42 3-5-4 光致螢光光譜儀(Photoluminescence, PL) ......................43 3-5-4 氣體感測系統........................................................................43 第四章 結果與討論.......................................................................................45 4-1 以氧化鋅奈米線改善薄膜型氣體感測器之特性..........................45 4-2 以水熱法製作氧化鋅奈米線氣體感測器......................................53 4-2-1 熱處理對於氧化鋅奈米線的影響........................................60 4-2-2 以不同前驅物濃度製作氧化鋅奈米線元件........................74 4-2-3 二維氧化鋅奈米結構應用於乙醇氣體感測器....................81 4-2-4 銀奈米粒子改善氧化鋅奈米線乙醇氣體感測器特性........86 4-3 全透明氧化鋅奈米線氣體感測器之製作......................................92 第五章結論...................................................................................................97 參考文獻.......................................................................................................101

    [1] 劉芳佐, "以水熱法製備之氧化鋅奈米桿之氣體感測特性," 碩士,
    化學工程系, 國立台灣科技大學, 2009.
    [2] 劉筱君, "含碳之鎵鈰雙成分氧化物薄膜氣體感測器之研究," 碩士,
    化學工程學系, 國立成功大學, 2012.
    [3] 姜海濤. (2012). 高精度放大器把關 有毒氣體檢測更可靠.
    [4] 邱碧秀, "氣體感測器:半導體型氣體感測器," 科儀新知, vol. 6, p. 5,
    1985.
    [5] 張希誠, "感測器的基礎與應用:工廠與機器人篇," p. 3, 1986.
    [6] 蔡嬪嬪, "氣體感測器的新動向," 工業材料, 1999.
    [7] E. A. Symons, "Catalytic Gas Sensors," in Gas Sensors, G. Sberveglieri,
    Ed., ed: Springer Netherlands, 1992, pp. 169-185.
    [8] 葉陶淵, "化學感測器中氣體感測器的新動向," 科儀新知, vol. 20, p.
    5, 1999.
    [9] Morel and G. G, "Method development and quality assurance for the
    analysis of hydrocarbons in environmental samples," International
    journal of environmental analytical chemistry, vol. 63, p. 20 1996.
    [10] A. Ashrafi and C. Jagadish, "Review of zincblende ZnO: Stability of
    metastable ZnO phases," Journal of Applied Physics, vol. 102, pp.
    071101-12, 10/01/ 2007.
    [11] U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, et
    al., "A comprehensive review of ZnO materials and devices," Journal
    of Applied Physics, vol. 98, p. 041301, 2005.
    [12] J. A. Sans, A. Segura, F. J. Manjón, B. Marí, A. Muñoz, and M. J.
    Herrera-Cabrera, "Optical properties of wurtzite and rock-salt ZnO
    under pressure," Microelectronics Journal, vol. 36, pp. 928-932, 10//2005.
    [13] V. L. Solozhenko, O. O. Kurakevych, P. S. Sokolov, and A. N. Baranov,
    "Kinetics of the Wurtzite-to-Rock-Salt Phase Transformation in ZnO at
    High Pressure," The Journal of Physical Chemistry A, vol. 115, pp.
    4354-4358, 2011/05/05 2011.
    [14] M. A. s. Verges, A. Mifsud, and C. J. Serna, "Formation of rod-like zinc
    oxide microcrystals in homogeneous solutions," Journal of the
    Chemical Society, Faraday Transactions, vol. 86, p. 959, 1990.
    [15] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurišić, C. C. Ling, C. D.
    Beling, et al., "Defects in ZnO Nanorods Prepared by a Hydrothermal
    Method," The Journal of Physical Chemistry B, vol. 110, pp.
    20865-20871, 2006/10/01 2006.
    [16] J. Han, P. Q. Mantas, and A. M. R. Senos, "Defect chemistry and
    electrical characteristics of undoped and Mn-doped ZnO," Journal of
    the European Ceramic Society, vol. 22, pp. 49-59, 1// 2002.
    [17] B. Lin, Z. Fu, and Y. Jia, "Green luminescent center in undoped zinc
    oxide films deposited on silicon substrates," Applied Physics Letters,
    vol. 79, pp. 943-945, 08/13/ 2001.
    [18] L. Vayssieres, "Growth of Arrayed Nanorods and Nanowires of ZnO
    from Aqueous Solutions," Advanced Materials, vol. 15, pp. 464-466,
    2003.
    [19] L. Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt, "Purpose-Built
    Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod
    Array of ZnO," The Journal of Physical Chemistry B, vol. 105, pp.
    3350-3352, 2001/05/01 2001.
    [20] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang,
    et al., "Low-Temperature Wafer-Scale Production of ZnO Nanowire
    Arrays," Angewandte Chemie International Edition, vol. 42, pp.
    3031-3034, 2003.
    [21] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G.
    Somorjai, et al., "General Route to Vertical ZnO Nanowire Arrays
    Using Textured ZnO Seeds," Nano Letters, vol. 5, pp. 1231-1236,
    2005/07/01 2005.
    [22] Y. Tak and K. Yong, "Controlled Growth of Well-Aligned ZnO
    Nanorod Array Using a Novel Solution Method," The Journal of
    Physical Chemistry B, vol. 109, pp. 19263-19269, 2005/10/01 2005.
    [23] J. B. Cui, C. P. Daghlian, U. J. Gibson, R. Pusche, P. Geithner, and L.Ley, "Low-temperature growth and field emission of ZnO nanowire
    arrays," Journal of Applied Physics, vol. 97, pp. 044315-7, 02/15/ 2005.
    [24] R. B. M. Cross, M. M. D. Souza, and E. M. S. Narayanan, "A low
    temperature combination method for the production of ZnO
    nanowires," Nanotechnology, vol. 16, p. 2188, 2005.
    [25] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang,
    "Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions,"
    Chemistry of Materials, vol. 17, pp. 1001-1006, 2005/03/01 2005.
    [26] 楊為翔, "氧化鋅奈米線電晶體之製作與探討," 碩士, 化學工程學
    系, 國立成功大學, 2011.
    [27] J. Zeleny, "On the conditions of instability of electrified drops with
    applications to the electrical discharge from liquid points," Proc. Camb.
    Phil. Soc., vol. 18, pp. 71-83, // 1915.
    [28] S. R. Morrison, “Chemical sensors,” Semiconductor Sensors. New
    York, NY, USA: John Wiley & Sons, 1994.
    [29] P. B. Weisz, "Effects of Electronic Charge Transfer between Adsorbate
    and Solid on Chemisorption and Catalysis," The Journal of Chemical
    Physics, vol. 21, pp. 1531-1538, 09/00/ 1953.
    [30] A. Gurlo and R. Riedel, "In Situ and Operando Spectroscopy for
    Assessing Mechanisms of Gas Sensing," Angewandte Chemie
    International Edition, vol. 46, pp. 3826-3848, 2007.
    [31] D. Kohl, "Surface processes in the detection of reducing gases with
    SnO2-based devices," Sensors and Actuators, vol. 18, pp. 71-113, 6/1/
    1989.
    [32] H. Windischmann and P. Mark, "A Model for the Operation of a Thin‐
    Film SnO x Conductance‐Modulation Carbon Monoxide Sensor,"
    Journal of The Electrochemical Society, vol. 126, pp. 627-633, April 1,
    1979 1979.
    [33] N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama,
    "Interactions of tin oxide surface with O2, H2O AND H2," Surface
    Science, vol. 86, pp. 335-344, 7/2/ 1979.
    [34] Y. Shimizu and M. Egashira, "Basic aspects and challenges of
    semiconductor gas sensors," MRS Bulletin, vol. 24, p. 7, 1999.
    [35] H. Ogawa, M. Nishikawa, and A. Abe, "Hall measurement studies and
    an electrical conduction model of tin oxide ultrafine particle films,"
    Journal of Applied Physics, vol. 53, pp. 4448-4455, 06/00/ 1982.
    [36] G. Korotcenkov, "The role of morphology and crystallographic
    structure of metal oxides in response of conductometric-type gas
    sensors," Materials Science and Engineering: R: Reports, vol. 61, pp.
    1-39, 5/12/ 2008.
    [37] G. Korotcenkov, "Metal oxides for solid-state gas sensors: What
    determines our choice?," Materials Science and Engineering: B, vol.
    139, pp. 1-23, 4/25/ 2007.
    [38] 劉博文, ULSI 製程技術: 文京圖書有限公司.
    [39] 莊達人, VLSI 製造技術: 高立圖書有限公司, 2000.
    [40] 吳東憲, "以電漿輔助化學氣相沉積法成長氮化鎵奈米柱於光電元
    件之應用," 博士, 化學工程學系, 國立成功大學, 2012.
    [41] http://zh.wikipedia.org/wiki/File:Scheme_TEM_en.svg
    [42] M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, and J. G. Park,
    "On-chip fabrication of ZnO-nanowire gas sensor with high gas
    sensitivity," Sensors and Actuators B: Chemical, vol. 138, pp. 168-173,
    2009.
    [43] R. Ghosh, G. K. Paul, and D. Basak, "Effect of thermal annealing
    treatment on structural, electrical and optical properties of transparent
    sol–gel ZnO thin films," Materials Research Bulletin, vol. 40, pp.
    1905-1914, 11/3/ 2005.
    [44] L. F. Dong, Z. L. Cui, and Z. K. Zhang, "Gas sensing properties of
    nano-ZnO prepared by arc plasma method," Nanostructured Materials,
    vol. 8, pp. 815-823, 10// 1997.
    [45] K. S. Weißenrieder and J. Müller, "Conductivity model for sputtered
    ZnO-thin film gas sensors," Thin Solid Films, vol. 300, pp. 30-41, 5/28/
    1997.
    [46] M. Takata, D. Tsubone, and H. Yanagida, "Dependence of Electrical
    Conductivity of ZnO on Degree of Sintering," Journal of the American
    Ceramic Society, vol. 59, pp. 4-8, 1976.
    [47] A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K.Kalantar-zadeh, "Characterization of ZnO Nanobelt-Based Gas Sensor
    for H2, NO2, and Hydrocarbon Sensing," Sensors Journal, IEEE, vol. 7,
    pp. 919-924, 2007.
    [48] S. Zhi-Peng, L. Lang, Z. Li, and J. Dian-Zeng, "Rapid synthesis of ZnO
    nano-rods by one-step, room-temperature, solid-state reaction and their
    gas-sensing properties," Nanotechnology, vol. 17, p. 2266, 2006.
    [49] T. Gao and T. H. Wang, "Synthesis and properties of multipod-shaped
    ZnO nanorods for gas-sensor applications," Applied Physics A, vol. 80,
    pp. 1451-1454, 2004.
    [50] C. Tai-You, C. Huey-Ing, H. Chi-Shiang, H. Chien-Chang, W.
    Jian-Sheng, C. Po-Cheng, et al., "ZnO-Nanorod-Based Ammonia Gas
    Sensors With Underlying Pt/Cr Interdigitated Electrodes," Electron
    Device Letters, IEEE, vol. 33, pp. 1486-1488, 2012.
    [51] T.-J. Hsueh, S.-J. Chang, C.-L. Hsu, Y.-R. Lin, and I. C. Chen, "Highly
    sensitive ZnO nanowire ethanol sensor with Pd adsorption," Applied
    Physics Letters, vol. 91, pp. 053111-3, 07/30/ 2007.
    [52] T.-J. Hsueh, C.-L. Hsu, S.-J. Chang, and I. C. Chen, "Laterally grown
    ZnO nanowire ethanol gas sensors," Sensors and Actuators B:
    Chemical, vol. 126, pp. 473-477, 10/1/ 2007.
    [53] N. Van Hieu and N. Duc Chien, "Low-temperature growth and
    ethanol-sensing characteristics of quasi-one-dimensional ZnO
    nanostructures," Physica B: Condensed Matter, vol. 403, pp. 50-56,
    2008.
    [54] D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xie, S. L. Shi, et al.,
    "Different origins of visible luminescence in ZnO nanostructures
    fabricated by the chemical and evaporation methods," Applied Physics
    Letters, vol. 85, pp. 1601-1603, 08/30/ 2004.
    [55] N. S. Norberg and D. R. Gamelin, "Influence of Surface Modification
    on the Luminescence of Colloidal ZnO Nanocrystals," The Journal of
    Physical Chemistry B, vol. 109, pp. 20810-20816, 2005/11/01 2005.
    [56] H. Zhou, H. Alves, D. M. Hofmann, W. Kriegseis, B. K. Meyer, G.
    Kaczmarczyk, et al., "Behind the weak excitonic emission of ZnO
    quantum dots: ZnO/Zn(OH)[sub 2] core-shell structure," Applied
    Physics Letters, vol. 80, pp. 210-212, 01/14/ 2002.
    [57] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A.
    Voigt, "Correlation between photoluminescence and oxygen vacancies
    in ZnO phosphors," Applied Physics Letters, vol. 68, pp. 403-405,01/15/ 1996.
    [58] A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A.
    Meijerink, "The Kinetics of the Radiative and Nonradiative Processes
    in Nanocrystalline ZnO Particles upon Photoexcitation," The Journal of
    Physical Chemistry B, vol. 104, pp. 1715-1723, 2000/03/01 2000.
    [59] Q. X. Zhao, P. Klason, M. Willander, H. M. Zhong, W. Lu, and J. H.
    Yang, "Deep-level emissions influenced by O and Zn implantations in
    ZnO," Applied Physics Letters, vol. 87, pp. 211912-3, 11/21/ 2005.
    [60] A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge,
    et al., "Defect emissions in ZnO nanostructures," Nanotechnology, vol.
    18, p. 095702, 2007.
    [61] M. A. Thomas and J. B. Cui, "Electrochemical growth and
    characterization of Ag-doped ZnO nanostructures," Journal of Vacuum
    Science & Technology B: Microelectronics and Nanometer Structures,
    vol. 27, p. 1673, 2009.
    [62] X. Liu, "Growth mechanism and properties of ZnO nanorods
    synthesized by plasma-enhanced chemical vapor deposition," Journal
    of Applied Physics, vol. 95, p. 3141, 2004.
    [63] Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, et
    al., "Photoluminescence study of ZnO films prepared by thermal
    oxidation of Zn metallic films in air," Journal of Applied Physics, vol.
    94, p. 354, 2003.
    [64] X. Xu, Z. Jin, C. Xu, J. Guo, Z. Shi, J. Pan, et al., "DEFECT-ORIGIN
    AND STABILITY OF VISIBLE EMISSION IN ZnO
    NANOPILLARS," Functional Materials Letters, vol. 05, p. 1240001,
    2012.
    [65] R. Ghosh, B. Mallik, S. Fujihara, and D. Basak, "Photoluminescence
    and photoconductance in annealed ZnO thin films," Chemical Physics
    Letters, vol. 403, pp. 415-419, 2005.
    [66] Y. Sun, N. George Ndifor-Angwafor, D. Jason Riley, and M. N. R.
    Ashfold, "Synthesis and photoluminescence of ultra-thin ZnO
    nanowire/nanotube arrays formed by hydrothermal growth," Chemical
    Physics Letters, vol. 431, pp. 352-357, 2006.
    [67] D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park,
    et al., "Effects of postgrowth annealing treatment on the
    photoluminescence of zinc oxide nanorods," Journal of Applied Physics,
    vol. 99, p. 113509, 2006.
    [68] Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, and P. Xu, "Brush-Like
    Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and
    Gas Sensor Properties," The Journal of Physical Chemistry C, vol. 113,
    pp. 3430-3435, 2009/03/05 2009.
    [69] L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, et al., "Size
    Dependence of Gas Sensitivity of ZnO Nanorods," The Journal of
    Physical Chemistry C, vol. 111, pp. 1900-1903, 2007/02/01 2007.
    [70] N. J. Dayan, S. R. Sainkar, R. N. Karekar, and R. C. Aiyer, "A
    thick-film hydrogen sensor based on a ZnO:MoO 3 formulation,"
    Measurement Science and Technology, vol. 9, p. 360, 1998.
    [71] L. Zhang, J. Zhao, H. Lu, L. Li, J. Zheng, H. Li, et al., "Facile synthesis
    and ultrahigh ethanol response of hierarchically porous ZnO
    nanosheets," Sensors and Actuators B: Chemical, vol. 161, pp. 209-215,
    2012.
    [72] J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, "ZnO Nanowire
    Transistors," The Journal of Physical Chemistry B, vol. 109, pp. 9-14,
    2005/01/01 2004.
    [73] O. Lupan, V. V. Ursaki, G. Chai, L. Chow, G. A. Emelchenko, I. M.
    Tiginyanu, et al., "Selective hydrogen gas nanosensor using individual
    ZnO nanowire with fast response at room temperature," Sensors and
    Actuators B: Chemical, vol. 144, pp. 56-66, 2010.
    [74] R. Y. Jian-Ning Ding, Yue-Bin Liu, Ning-Yi Yuan, Zhi-Hui Chen and
    Gu-Qiao Ding, "The Influence of Potential on the Al Microstep
    Structures and the Fabrication of Combined Structures of ZnO
    Nanosheets with Al Microsteps and PAAs," Nanoscience &
    Nanotechnology-Asia, vol. 1, p. 5, 2011.
    [75] E. Comini, "Metal oxide nano-crystals for gas sensing," Analytica
    Chimica Acta, vol. 568, pp. 28-40, 5/24/ 2006.
    [76] G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, "Metal Oxide
    Semi-Conductor Gas Sensors in Environmental Monitoring," Sensors,
    vol. 10, pp. 5469-5502, 2010.
    [77] N. Hongsith, C. Viriyaworasakul, P. Mangkorntong, N. Mangkorntong,
    and S. Choopun, "Ethanol sensor based on ZnO and Au-doped ZnO
    nanowires," Ceramics International, vol. 34, pp. 823-826, 5// 2008.
    [78] S. J. Chang, T. J. Hsueh, I. C. Chen, and B. R. Huang, "Highly sensitive
    ZnO nanowire CO sensors with the adsorption of Au nanoparticles,"
    Nanotechnology, vol. 19, p. 175502, Apr 30 2008.
    [79] Y. Zhang, J. Xu, P. Xu, Y. Zhu, X. Chen, and W. Yu, "Decoration of
    ZnO nanowires with Pt nanoparticles and their improved gas sensing
    and photocatalytic performance," Nanotechnology, vol. 21, p. 285501,
    Jul 16 2010.
    [80] C. S. Rout, S. Hari Krishna, S. R. C. Vivekchand, A. Govindaraj, and C.
    N. R. Rao, "Hydrogen and ethanol sensors based on ZnO nanorods,
    nanowires and nanotubes," Chemical Physics Letters, vol. 418, pp.
    586-590, 2/6/ 2006.
    [81] H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton,
    et al., "Detection of hydrogen at room temperature with catalyst-coated
    multiple ZnO nanorods," Applied Physics A, vol. 81, pp. 1117-1119,
    2005.
    [82] Q. Simon, D. Barreca, A. Gasparotto, C. Maccato, E. Tondello, C. Sada,
    et al., "Ag/ZnO nanomaterials as high performance sensors for
    flammable and toxic gases," Nanotechnology, vol. 23, p. 025502, Jan
    20 2012.
    [83] M. Dean, A. McKee, and M. Bowker, "Oxygen adsorption on a
    supported Ag catalyst and modification by surface promoters," Surface
    Science, vol. 211–212, pp. 1061-1067, 4/1/ 1989.
    [84] H. B. Lu, H. Li, L. Liao, Y. Tian, M. Shuai, J. C. Li, et al.,
    "Low-temperature synthesis and photocatalytic properties of ZnO
    nanotubes by thermal oxidation of Zn nanowires," Nanotechnology, vol.
    19, p. 045605, 2008.
    [85] D. Lin, H. Wu, R. Zhang, and W. Pan, "Enhanced Photocatalysis of
    Electrospun Ag−ZnO Heterostructured Nanofibers," Chemistry of
    Materials, vol. 21, pp. 3479-3484, 2009.
    [86] N. Yamazoe, "New approaches for improving semiconductor gas
    sensors," Sensors and Actuators B: Chemical, vol. 5, pp. 7-19, 8// 1991.
    [87] Y. T. Shigenori Matsushima, 1 Norio Miura and Noboru Yamazoe
    "Electronic Interaction between Metal Additives and Tin Dioxide in Tin
    Dioxide-Based Gas Sensors," Jpn. J. Appl. Phys, vol. 27, p. 5, 1998.
    [88] S. R. Morrison, "Selectivity in semiconductor gas sensors," Sensors
    and Actuators, vol. 12, pp. 425-440, 11// 1987.
    [89] Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, "Effects of heat
    treatment on properties of ITO films prepared by rf magnetron
    sputtering," Vacuum, vol. 75, pp. 183-188, 7/12/ 2004.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE