簡易檢索 / 詳目顯示

研究生: 江碩文
Jiang, Shuo-Wen
論文名稱: 以DNA輔助製作奈米遮罩進行奈米線蝕刻
DNA-assisted Fabrication of Nanomask for Nanowire Lithography
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 142
中文關鍵詞: 奈米線蝕刻DNA圖案式分子梳法感應耦合式低溫蝕刻
外文關鍵詞: nanowire lithography (NWL), DNA, patterned molecular combing, inductively coupled plasma processing (ICP)
相關次數: 點閱:126下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米線蝕刻(Nanowire lithography)是一種利用奈米線作為遮罩,將其一維結構複製於基版的技術。進行蝕刻前首要的任務即是奈米遮罩的製備,本研究提出利用圖案式分子梳法將DNA奈米束轉置於基版上以其排列與奈米尺度,來定義遮罩的圖形與線寬。有別於一般DNA分子金屬化的方式,本研究首先提出預先活化DNA分子再進行拉伸、轉置及還原反應,以期能減少背景雜訊的產生。實驗結果發現,經預先活化的DNA分子,雖然可以被還原成金屬,卻無法藉由分子梳法進行拉伸,形成金屬奈米線陣列。另外,本研究亦直接利用DNA奈米束作為遮罩,進行濕蝕刻,除了可以製作金奈米模具之外,亦可定義鋁遮罩的線寬,進而將溝槽結構複製於氮化矽基版上,以作為ICP低溫矽蝕刻之遮罩,所得到的矽溝槽最小寬度約30nm。值得一提的是,藉由添加64%的甘油於DNA溶液中,雖然可以增加奈米束於矽基版的轉置率,但甘油分子會影響蝕刻的結果。

    Nanowire lithography (NWL) is a technique which is utilized to produce 1-D nanostructure. The first step to perform this technique is to fabricate a nanomask. Various strategies have been applied to generate the nanomask with different materials such as metals, oxides, carbon nanotubes and biomolecules. In this study, we propose to use the patterned and stretched DNA molecules generated by the patterned molecular combing technique to serve as the nanomask and define the line width. The study includes two parts: one is DNA metallization and the other is DNA as the mask for subsequent etching processes. It is found that although the DNA molecules can be chelated with palladium ions for metallization, they cannot be stretched afterwards. As to using the patterned and stretched DNA molecules as the mask for subsequent etching processes, the results showed that the gold nanomold can be fabricated and the silicon trench with a minimum width approximately 30 nm can be produced via inductively coupled plasma processing. It is worthy of noting that although adding 64 wt% glycerin into the DNA solution facilitates transferring the patterned and stretched DNA molecules onto the substrate, it brings the undesired effect to the subsequent etching processes such as widening the line width.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1前言 1 1.2研究現況與瓶頸 1 1.3研究動機與目的 2 第二章 文獻回顧 5 2.1奈米蝕刻技術 6 2.1.1電子束微影法(Electron beam lithography; EBL) 6 2.1.2聚焦離子束微影法(Focused ion beam lithography; FIBL) 7 2.1.3 X射線微影法(X-ray lithography) 8 2.1.4 奈米壓印微影法(Nanoimprint lithography; NIL) 8 2.1.5 鄰近式探針微影法(proximity probe lithography) 10 2.1.6 軟微影法(soft lithography) 11 2.2 奈米線蝕刻法(Nanowire lithography; NWL) 12 2.2.1 Microtubules(MTs) 14 2.2.2 DNA 16 2.2.3 Carbon Nanotube 16 2.2.4 Chemically synthesized NWs(CS-NWs) 18 第三章 實驗材料與方法 39 3.1 PDMS印章製作流程 39 3.1.1 實驗藥品 39 3.1.2 實驗儀器 40 3.1.3 實驗流程 42 3.2 DNA金屬化 47 3.2.1 實驗藥品 47 3.2.2 實驗儀器 47 3.2.3 實驗流程 48 3.3 奈米模具製作 50 3.3.1 實驗藥品 50 3.3.2 實驗儀器 51 3.3.3 實驗流程 52 3.4 奈米線蝕刻 54 3.4.1 實驗藥品 54 3.4.2 實驗儀器 54 3.4.3 實驗流程 55 3.5 分析與量測 56 3.5.1 螢光顯微鏡 56 3.5.2 原子力顯微鏡 57 3.5.3 電子顯微鏡 59 第四章 預先活化DNA分子製作奈米金屬線 73 4.1 活化時間的影響 73 4.2 離子濃度的影響 74 4.3 緩衝溶液的影響 75 4.4 小結 77 第五章 利用DNA進行奈米線蝕刻 87 5.1 金奈米模具製備 87 5.2 矽奈米模具製備 88 5.2.1改善DNA分子與矽基版之附著性 89 5.2.2 ICP蝕刻時間的影響 90 5.2.3 小結 91 5.3 利用DNA輔助製作奈米遮罩進行奈米線蝕刻 92 5.3.1 沈積氮化矽之目的 92 5.3.2 鋁蝕刻速率調控 92 5.3.3 矽奈米溝槽製備 93 5.3.4 小結 95 第六章 總結論 127 第七章 未來工作 129 第八章 參考文獻 132 附錄一 以tyrosine活化DNA分子製備奈米金屬線 140

    [1] R. Feynman, “There’s plenty of room at the bottom, 1959,” American Physical Society EaS California Institute of Technology, Pasadena.
    [2] The National Technology Roadmap for Semiconductor Industry Association, 1999.
    [3] 張源炘, “以分子梳結合軟微影技術製備大面積金屬奈米線陣列及奈米流道,” 國立成功大學碩士論文, 2008.
    [4] 程俊傑, “探討以圖案式分子梳技術製備整齊排列之長DNA奈米束,” 國立成功大學碩士論文, 2009.
    [5] D. Tennant, "In Nanotechnology; Timp, G., Ed," Springer-Verlag: New York, 1999.
    [6] Y. Chen, F. Carcenac, F. Rousseaux et al., “Improvements of nanostructure patterning in X-ray mask making,” Japanese Journal of Applied Physics, vol. 33, no. 12 B, pp. 6923-6927, 1994.
    [7] A. Lebib, Y. Chen, F. Carcenac et al., “Tri-layer systems for nanoimprint lithography with an improved process latitude,” Microelectronic Engineering, vol. 53, no. 1-4, pp. 175-178, 2000.
    [8] A. Tseng, K. Chen, C. Chen et al., “Electron beam lithography in nanoscale fabrication: recent development,” Ieee Transactions on Electronics Packaging Manufacturing, vol. 26, no. 2, pp. 141-149, 2003.
    [9] H. Craighead, R. Howard, L. Jackel et al., “10 nm linewidth electron beam lithography on GaAs,” Applied Physics Letters, vol. 42, pp. 38, 1983.
    [10] W. Chen, and H. Ahmed, “Fabrication of 5–7 nm wide etched lines in silicon using 100 keV electron beam lithography and polymethylmethacrylate resist,” Applied Physics Letters, vol. 62, pp. 1499, 1993.
    [11] R. Seliger, J. Ward, V. Wang et al., “A high intensity scanning ion probe with submicrometer spot size,” Applied Physics Letters, vol. 34, pp. 310, 1979.
    [12] Y. Chen, and A. Pepin, “Nanofabrication: Conventional and nonconventional methods,” Electrophoresis, vol. 22, no. 2, pp. 187-207, 2001.
    [13] S. Matsui, Y. Kojima, and Y. Ochiai, “HIGH-RESOLUTION FOCUSED ION-BEAM LITHOGRAPHY,” Applied Physics Letters, vol. 53, no. 10, pp. 868-870, Sep, 1988.
    [14] D. Spears, and H. Smith, “High-resolution pattern replication using soft x rays,” Electronics letters, vol. 8, pp. 102, 1972.
    [15] Y. Chen, R. Kupka, F. Rousseaux et al., “50-nm x-ray lithography using synchrotron radiation,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 12, pp. 3959, 1994.
    [16] S. Chou, P. Krauss, and P. Renstrom, “Imprint of sub 25 nm vias and trenches in polymers,” Applied Physics Letters, vol. 67, pp. 3114, 1995.
    [17] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science, vol. 272, no. 5258, pp. 85-87, Apr, 1996.
    [18] S. Chou, P. Krauss, W. Zhang et al., “Sub-10 nm imprint lithography and applications,” Journal of Vacuum Science and Technology-Section B-Microelectronics Nanometer Structur, vol. 15, no. 6, pp. 2897-2904, 1997.
    [19] M. Colburn, S. Johnson, M. Stewart et al., "Step and flash imprint lithography: a new approach to high-resolution patterning." pp. 379-389.
    [20] M. Colburn, A. Grot, B. Choi et al., “Patterning nonflat substrates with a low pressure, room temperature, imprint lithography process,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 19, pp. 2162, 2001.
    [21] E. Dobisz, and C. Marrian, “Sub-30 nm lithography in a negative electron beam resist with a vacuum scanning tunneling microscope,” Applied Physics Letters, vol. 58, pp. 2526, 1991.
    [22] M. McCord, and R. Pease, “Lift-off metallization using poly (methyl methacrylate) exposed with a scanning tunneling microscope,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 6, pp. 293, 1988.
    [23] C. Marrian, and E. Snow, “Proximal probe lithography and surface modification,” Microelectronic Engineering, vol. 32, no. 1-4, pp. 173-189, 1996.
    [24] D. Eigler, and E. Schweizer, “Positioning single atoms with a scanning tunnelling microscope,” Nature, vol. 344, no. 6266, pp. 524-526, 1990.
    [25] S. Minne, H. Soh, P. Flueckiger et al., “Fabrication of 0.1 μm metal oxide semiconductor field effect transistors with the atomic force microscope,” Applied Physics Letters, vol. 66, pp. 703, 1995.
    [26] S. Minne, S. Manalis, and C. Quate, “Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators,” Applied Physics Letters, vol. 67, pp. 3918, 1995.
    [27] R. Piner, J. Zhu, F. Xu et al., “" Dip-pen" nanolithography,” Science, vol. 283, no. 5402, pp. 661, 1999.
    [28] S. Minne, G. Yaralioglu, S. Manalis et al., “Automated parallel high-speed atomic force microscopy,” Applied Physics Letters, vol. 72, pp. 2340, 1998.
    [29] G. Whitesides, J. Mathias, and C. Seto, “Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures,” Science, vol. 254, no. 5036, pp. 1312, 1991.
    [30] K. Berggren, A. Bard, J. Wilbur et al., “Microlithography by using neutral metastable atoms and self-assembled monolayers,” SCIENCE-NEW YORK THEN WASHINGTON-, pp. 1255-1255, 1995.
    [31] J. Wilbur, and G. Whitesides, “Self-assembly and self-assembled monolayers in micro-and nanofabrication,” Nanotechnology, pp. 331, 1999.
    [32] A. Inoue, T. Ishida, N. Choi et al., “Nanometer-scale patterning of self-assembled monolayer films on native silicon oxide,” Applied Physics Letters, vol. 73, pp. 1976, 1998.
    [33] P. John, and H. Craighead, “Microcontact printing and pattern transfer using trichlorosilanes on oxide substrates,” Applied Physics Letters, vol. 68, pp. 1022, 1996.
    [34] H. Schmid, and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules, vol. 33, no. 8, pp. 3042-3049, 2000.
    [35] H. Biebuyck, N. Larsen, E. Delamarche et al., “Lithography beyond light: Microcontact printing with monolayer resists,” Ibm Journal of Research and Development, vol. 41, no. 1, pp. 159-170, 1997.
    [36] N. Jeon, J. Hu, G. Whitesides et al., “Fabrication of silicon MOSFETs using soft lithography,” Advanced Materials, vol. 10, no. 17, pp. 1466-1469, 1998.
    [37] T. Deng, M. Prentiss, and G. Whitesides, “Fabrication of magnetic microfiltration systems using soft lithography,” Applied Physics Letters, vol. 80, pp. 461, 2002.
    [38] R. Jackman, J. Wilbur, and G. Whitesides, “Fabrication of submicrometer features on curved substrates by microcontact printing,” Science(Washington, D. C.), vol. 269, no. 5224, pp. 664-666, 1995.
    [39] A. Bernard, J. Renault, B. Michel et al., “Microcontact printing of proteins,” Advanced Materials, vol. 12, no. 14, pp. 1067-1070, 2000.
    [40] X. Zhao, Y. Xia, and G. Whitesides, “Fabrication of three-dimensional micro-structures: Microtransfer molding,” Advanced Materials, vol. 8, no. 10, pp. 837-840, 1996.
    [41] X. Zhao, S. Smith, S. Waldman et al., “Demonstration of waveguide couplers fabricated using microtransfer molding,” Applied Physics Letters, vol. 71, pp. 1017, 1997.
    [42] Y. Xia, E. Kim, X. Zhao et al., “Complex optical surfaces formed by replica molding against elastomeric masters,” Science, vol. 273, no. 5273, pp. 347, 1996.
    [43] H. Shim, J. Lee, T. Hwang et al., “Patterning of proteins and cells on functionalized surfaces prepared by polyelectrolyte multilayers and micromolding in capillaries,” Biosensors and Bioelectronics, vol. 22, no. 12, pp. 3188-3195, 2007.
    [44] R. Lipkin, “Tiny structures molded in capillaries,” Science News, vol. 148, no. 8, pp. 118-118, 1995.
    [45] J. Rogers, Z. Bao, and L. Dhar, “Fabrication of patterned electroluminescent polymers that emit in geometries with feature sizes into the submicron range,” Applied Physics Letters, vol. 73, pp. 294, 1998.
    [46] J. Lawrence, G. Turnbull, and I. Samuel, “Polymer laser fabricated by a simple micromolding process,” Applied Physics Letters, vol. 82, pp. 4023, 2003.
    [47] W. Tian, J. Weigold, and S. Pang, “Comparison of Cl and F-based dry etching for high aspect ratio Si microstructures etched with an inductively coupled plasma source,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 18, pp. 1890, 2000.
    [48] P. Bressers, J. Kelly, J. Gardeniers et al., “Surface morphology of p-type (100) silicon etched in aqueous alkaline solution,” Journal of the Electrochemical Society, vol. 143, no. 5, pp. 1744-1749, 1996.
    [49] K. Richter, M. Orfert, S. Howitz et al., “Deep plasma silicon etch for microfluidic applications,” Surface & Coatings Technology, vol. 116, pp. 461-467, 1999.
    [50] C. Chung, H. Lu, and T. Jaw, “High aspect ratio silicon trench fabrication by inductively coupled plasma,” Microsystem Technologies, vol. 6, no. 3, pp. 106-108, 2000.
    [51] T. Pandhumsoporn, L. Wang, M. Feldbaum et al., "High-etch-rate deep anisotropic plasma etching of silicon for MEMS fabrication." p. 93.
    [52] F. Marty, L. Rousseau, B. Saadany et al., “Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures,” Microelectronics Journal, vol. 36, no. 7, pp. 673-677, 2005.
    [53] W. Fritzsche, K. J. Bohm, E. Unger et al., “Metallic nanowires created by biopolymer masking,” Applied Physics Letters, vol. 75, no. 18, pp. 2854-2856, Nov, 1999.
    [54] W. Vater, K. Bohm, and E. Unger, “Effects of DNA on the taxol stimulated in vitro assembly of microtubule protein from porcine brain,” Studio Biophys, vol. 97, pp. 49-60, 1983.
    [55] M. Shelanski, F. Gaskin, and C. Cantor, “Microtubule assembly in the absence of added nucleotides,” Proceedings of the National Academy of Sciences, vol. 70, no. 3, pp. 765, 1973.
    [56] P. Schiff, J. Fant, and S. Horwitz, “Promotion of microtubule assembly in vitro by taxol,” 1979.
    [57] A. Broers, W. Molzen, J. Cuomo et al., “Electron beam fabrication of 80 A metal structures,” Applied Physics Letters, vol. 29, pp. 596, 1976.
    [58] W. Fritzsche, K. Bohm, E. Unger et al., “Making electrical contact to single molecules,” Nanotechnology, vol. 9, pp. 177-183, 1998.
    [59] M. Burghard, G. Philipp, S. Roth et al., “Bridging of lateral nanoelectrodes with a metal particle chain,” Applied Physics A: Materials Science & Processing, vol. 67, no. 5, pp. 591-593, 1998.
    [60] R. Zimmermann, and E. Cox, “DNA stretching on functionalized gold surfaces,” Nucleic acids research, vol. 22, no. 3, pp. 492, 1994.
    [61] A. Bensimon, A. Simon, A. Chiffaudel et al., “Alignment and sensitive detection of DNA by a moving interface,” Science, vol. 265, no. 5181, pp. 2096, 1994.
    [62] D. C. Turner, C. Y. Chang, K. Fang et al., “Selective adhesion of functional microtubules to patterned silane surfaces,” Biophysical Journal, vol. 69, no. 6, pp. 2782-2789, Dec, 1995.
    [63] O. Harnack, W. Ford, A. Yasuda et al., “Tris (hydroxymethyl) phosphine-capped gold particles templated by DNA as nanowire precursors,” Nano Letters, vol. 2, no. 9, pp. 919-923, 2002.
    [64] D. Nyamjav, and A. Ivanisevic, “Templates for DNA-templated Fe3O4 nanoparticles,” Biomaterials, vol. 26, no. 15, pp. 2749-2757, 2005.
    [65] S. Tanaka, W. Fritzsche, Y. Sako et al., “Synthesis of Long-template DNA Using Enzymatic Reaction for Regular Alignment of Au-nanoparticles,” Chemistry Letters, vol. 35, no. 11, pp. 1290-1291, 2006.
    [66] A. Csaki, F. Garwe, A. Steinbruck et al., “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Letters, vol. 7, no. 2, pp. 247, 2007.
    [67] K. Keren, M. Krueger, R. Gilad et al., “Sequence-specific molecular lithography on single DNA molecules,” Science, vol. 297, no. 5578, pp. 72, 2002.
    [68] E. Braun, Y. Eichen, U. Sivan et al., “DNA-templated assembly and electrode attachment of a conducting silver wire,” Nature, vol. 391, no. 6669, pp. 775-778, 1998.
    [69] J. Richter, M. Mertig, W. Pompe et al., “Construction of highly conductive nanowires on a DNA template,” Applied Physics Letters, vol. 78, pp. 536, 2001.
    [70] C. Monson, and A. Woolley, “DNA-templated construction of copper nanowires,” Nano Letters, vol. 3, no. 3, pp. 359-364, 2003.
    [71] H. Becerril, R. Stoltenberg, C. Monson et al., “Ionic surface masking for low background in single-and double-stranded DNA-templated silver and copper nanorods,” Journal of Materials Chemistry, vol. 14, no. 4, pp. 611-616, 2004.
    [72] S. Park, R. Barish, H. Li et al., “Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires,” Nano Lett, vol. 5, no. 4, pp. 693-696, 2005.
    [73] Q. Gu, C. Cheng, and D. Haynie, “Cobalt metallization of DNA: toward magnetic nanowires,” Nanotechnology, vol. 16, pp. 1358-1363, 2005.
    [74] C. Niemeyer, M. Adler, B. Pignataro et al., “Self-assembly of DNA-streptavidin nanostructures and their use as reagents in immuno-PCR,” Nucleic acids research, vol. 27, no. 23, pp. 4553, 1999.
    [75] H. Yan, S. Park, G. Finkelstein et al., “DNA-templated self-assembly of protein arrays and highly conductive nanowires,” Science, vol. 301, no. 5641, pp. 1882, 2003.
    [76] H. Becerril, P. Ludtke, B. Willardson et al., “DNA-templated nickel nanostructures and protein assemblies,” Langmuir, vol. 22, no. 24, pp. 10140-10144, 2006.
    [77] Y. He, Y. Tian, A. Ribbe et al., “Highly connected two-dimensional crystals of DNA six-point-stars,” J. Am. Chem. Soc, vol. 128, no. 50, pp. 15978-15979, 2006.
    [78] Z. X. Deng, and C. D. Mao, “Molecular lithography with DNA nanostructures,” Angewandte Chemie-International Edition, vol. 43, no. 31, pp. 4068-4070, 2004.
    [79] H. A. Becerril, and A. T. Woolley, “DNA shadow nanolithography,” Small, vol. 3, no. 9, pp. 1534-1538, Sep, 2007.
    [80] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56-58, 1991.
    [81] G. Dresselhaus, and P. Eklund, Science of fullerenes and carbon nanotubes: Academic Pr, 1996.
    [82] B. I. Yakobson, and R. E. Smalley, “Fullerene nanotubes: C-1000000 and beyond,” American Scientist, vol. 85, no. 4, pp. 324-337, Jul-Aug, 1997.
    [83] J. Bonard, J. Salvetat, T. Stockli et al., “Field emission from single-wall carbon nanotube films,” Applied Physics Letters, vol. 73, pp. 918, 1998.
    [84] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler et al., “Electronic structure of atomically resolved carbon nanotubes,” Nature, vol. 391, no. 6662, pp. 59-62, Jan, 1998.
    [85] S. Tans, A. Verschueren, and C. Dekker, “Room-temperature transistor basedon a single carbonnanotube,” Nature, vol. 393, pp. 49, 1998.
    [86] W. Yun, J. Kim, K. Park et al., “Fabrication of metal nanowire using carbon nanotube as a mask,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 18, pp. 1329, 2000.
    [87] R. Behrisch, and W. Eckstein, "Sputtering by particle bombardment."
    [88] D. Srivastava, D. Brenner, J. Schall et al., “Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: kinky chemistry,” J. Phys. Chem. B, vol. 103, no. 21, pp. 4330-4337, 1999.
    [89] M. Schmidt, T. Nielsen, D. Madsen et al., “Nanoscale silicon structures by using carbon nanotubes as reactive ion etch masks,” Nanotechnology, vol. 16, no. 6, pp. 750-753, 2005.
    [90] N. Gharbi, C. Sanchez, J. Livage et al., “MIXED-VALENCE POLYVANADIC ACID GELS,” Inorganic Chemistry, vol. 21, no. 7, pp. 2758-2765, 1982.
    [91] J. Livage, “Optical and electrical properties of vanadium oxides synthesized from alkoxides,” Coordination Chemistry Reviews, vol. 192, pp. 391-403, Sep, 1999.
    [92] R. ordan, M. Burghard, and K. Kern, “Removable template route to metallic nanowires and nanogaps,” Applied Physics Letters, vol. 79, pp. 2073, 2001.
    [93] S. Myung, K. Heo, M. Lee et al., “‘Focused’assembly of V2O5 nanowire masks for the fabrication of metallic nanowire sensors,” Nanotechnology, vol. 18, pp. 205304, 2007.
    [94] D. Whang, S. Jin, and C. M. Lieber, “Nanolithography using hierarchically assembled nanowire masks,” Nano Letters, vol. 3, no. 7, pp. 951-954, Jul, 2003.
    [95] A. Colli, A. Fasoli, S. Pisana et al., “Nanowire lithography on silicon,” Nano Letters, vol. 8, no. 5, pp. 1358-1362, May, 2008.
    [96] A. Colli, A. Fasoli, P. Beecher et al., “Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties,” Journal of Applied Physics, vol. 102, pp. 034302, 2007.
    [97] Y. Q. Fu, A. Colli, A. Fasoli et al., “Deep reactive ion etching as a tool for nanostructure fabrication,” Journal of Vacuum Science & Technology B, vol. 27, no. 3, pp. 1520-1526, May, 2009.
    [98] Y. Xia, and G. Whitesides, “Soft lithography,” Annual Review of Materials Science, vol. 28, no. 1, pp. 153-184, 1998.
    [99] Q. Gu, C. Cheng, R. Gonela et al., “DNA nanowire fabrication,” Nanotechnology, vol. 17, pp. R14-R25, 2006.
    [100] J. Guan, and L. Lee, “Generating highly ordered DNA nanostrand arrays,” Proceedings of the National Academy of Sciences, vol. 102, no. 51, pp. 18321, 2005.
    [101] M. Zama, D. Olins, B. Prescott et al., “Nucleosome conformation: pH and organic solvent effects,” Nucleic acids research, vol. 5, no. 10, pp. 3881, 1978.
    [102] A. F. Holleman, and E. Wiberg, Inorganic Chemistry: San Diego: Academic Press, 2001.
    [103] V. Balladur, A. Theretz, and B. Mandrand, “Determination of the main forces driving DNA oligonucleotide adsorption onto aminated silica wafers,” Journal of Colloid and Interface Science, vol. 194, no. 2, pp. 408-418, 1997.
    [104] M. de Boer, J. Gardeniers, H. Jansen et al., “Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures,” Journal of Microelectromechanical Systems, vol. 11, no. 4, pp. 385-401, 2002.
    [105] K. Williams, and R. Muller, “Etch rates for micromachining processing,” Journal of Microelectromechanical Systems, vol. 5, no. 4, pp. 256-269, 1996.

    下載圖示 校內:2013-07-06公開
    校外:2013-07-06公開
    QR CODE