簡易檢索 / 詳目顯示

研究生: 李宗諺
Li, Tzung-Yen
論文名稱: 架構分碼多工技術於被動光網路之無線光纖系統
Structuring Code Division Multiple Access on Passive Optical Network for Radio over Fiber System
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 69
中文關鍵詞: 幅頻域光分碼多工無線光纖系統接光切換器光分碼多工
外文關鍵詞: DOS-OCDMA, SAC-OCDMA, Rof
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在無線多媒體通訊系統的發展之下,傳輸的系統被需求擁有大量頻寬來傳輸各式各樣聲音,資料,影像。無先光纖(Radio over Fiber, Rof)系統是一個良好的解決方案。只要利用有限數目的基地台來接收無線傳輸訊號,中間利用光纖傳輸再傳到接收端便可達成,如此方式除了節省單純無線傳輸中繼站的成本,且藉由光傳輸環境也讓頻寬配置增加了系統網路彈性。
      在無線光纖系統中有個替代的名詞是光纖到無線環境(Fiber to the Air, FTTA),藉由中心控制站分配傳輸的訊號至各無線接收基地台,而現行的研究中,被動光網路 (Passive Optical Network, PON)架構是一個已經被發展10年的技術,藉由這樣的架構我們便可達到大頻寬傳輸的需求。
      在這篇研究中,提出兩種光分碼多工處理(Optical Code Division Multiple Access, OCDMA)的架構去實現這樣的被動光網路,首先是架構在頻譜域,利用陣列波導光柵(Arrayed-Waveguide Grating, AWG)的特性,把寬頻光源分割成多個波長並且達成最大長度序碼(maximum length sequence , m-sequence)的編碼,而這種方式我們稱為頻域振幅編碼之光分碼多工(Spectrum Amplitude Coding-Optical Code Division Multiple Access, SAC-OCDMA)系統。接下來我們在時域上利用光切換器(Optical Switch, OSW)達成開關鍵移的光時域編碼,而這種方式我們稱為直接光切換器光分碼多工(Direct Optical Switching-Optical Code Division Multiple Access, DOS-OCDMA)系統。
      而其研究結果顯示,當我們考慮光源成本時,利用SAC-OCDMA可使用比雷射便宜且需求量較少的寬頻光源,但是在DOS-OCDMA系統卻能較有效的改善系統效能。但無論使用哪種方式,光調變指數(Optical Modulation Index, OMI)都是一個重要影響系統效能的參數,因此必須有效調整OMI來達到高的系統效能值。

    In order to increase the requirement of personal wireless communication systems including voice, data, and picture and video, these multimedia services require the realization of broadband distribution systems. Radio over fiber (Rof) links possess the function of transferring radio signals into remote stations by keeping their radio format, such as radio frequencies, modulation formats, and so on. In addition to the advantages of potential low cost, RoF technology which can transfer the RF frequency allocation to a central station allows flexible network channel allocation and rapid response to variations in traffic demand。
    Rof system is also named fiber to the air (FTTA) which refers to the deployment of optical fiber from a central office switch directly into the radio base station. There has been significant development of the passive optical networks (PON) standards over the past 10 years and it has been expected that many kinds of legacy services can be emulated over the same infrastructure with new broad-band services. 
    In this thesis, two kinds of optical code division multiple access (OCDMA) methods have been proposed. We first construct OCDMA in wavelength domain, by taking advantage of the characteristic of arrayed-waveguide grating (AWG). The broadband optical sources can be divided into many wavelengths and maximum length sequence (m-sequence) coding can be achieved. Therefore, the spectrum amplitude coding (SAC) can be realized and called SAC-OCDMA. 
    We then perform coding in time domain by taking advantage of the characteristic of optical switch (OSW). This kind of OCDMA is called DOS-OCDMA. 
    The result shows that SAC-OCDMA must be chosen if we want to use less optical sources with lower cost, while DOS-OCDMA must be chosen to effectively improve system performance (CNR or BER). No matter which system we choose, an important thing is to set the optical modulation index to obtain high performance.

    Chapter 1 Introduction 1 1.1 The Development of Radio over Fiber 1 1.2 The Concept of Fiber to the “x” 5 1.3 Passive Optical Network architecture 7 1.4 The Motive of Our Research 13 1.5 Sections Preview 15 Chapter 2 Overviews of CDMA 16 2.1 The Development of CDMA 16 2.2 From CDMA to OCDMA 18 Chapter 3 Spectrum Amplitude Coding CDMA PON 28 3.1 The Arrayed-waveguide Grating Theory and Operating Principle 28 3.2 Maximal-Length Sequence (M-Sequence) codes 31 3.3 AWG-based System Configuration 33 3.4 Performance Analysis for SAC-OCDMA PON 40 Chapter 4 Direct Optical Switching CDMA PON 50 4.1 Mach-Zehnder Interferometer 50 4.2 Direct Optical Switching CDMA PON System Configuration 51 4.3 Performance Analysis for DOS-OCDMA PON 55 Chapter 5 Conclusions 63 References 64

    [1] W.I. Way, “Optical fiber based microcellular systems: an overview”, IEICE Trans. Commun. Vol. E76-B, pp.1091-1101, Sept. 1993.
    [2] J.S. Wu, J. Wu and H.W. Tsao, “A radio-over-fiber network for microcellular system application”, IEEE Trans. On Vehicular Tech., no.1, pp.84-94, Feb. 1998.
    [3] H. Al-Raweshidy and S. Komaki, Radio over fiber technologies for mobile communication networks. Boston : Artech House, 2002.
    [4] M. Haardt, W. Mohr, A.G. Siemens “The complete solution for third generation wireless communications: two modes on Air, one Winning Strategy,” IEEE Personal Communications, pp. 18-24, Dec 2000.
    [5] K. Tachikawa, “A perspective on the evolution of mobile communications”, IEEE Commun. Mag., Pp 66-73, Oct. 2003.
    [6] PK Tang, L C Ong, A Alphones, B Luo, and M Fujise, “PER and EVM measurements of a radio over fiber network for cellular and WLAN system applications” (to appear in IEEE J. Lightwave Tech., Nov.2004).
    [7] A. Kim, Y.H. Ju, Y.S Kim and S.M. Nahm, “Hybrid fiber radio systems for pico-cell communications” Microwave Opt. Technol. Lett., Vol.33, no.5, pp. 328-330, June 2003.
    [8] N. Kanno, K. Ito, “Fiber optic subcarrier multiplexing transport for broadband subscriber distribution network,” IEEE Journal on Selected Areas in Communications, vol.2, pp 996-1003, June, 1989.
    [9] A. Kim, Y.H. Ju, Y.S. Kim and S.M. Nahm, “Hybrid fiber radio systems for pico-cell communications”, Microwave Opt. Technol. Lett, Vol.33, no.5, pp.328-330, June, 2003.
    [10] G.. Kramer, G.. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network” IEEE Communications Magazine, Vol.40, pp. 66 – 73, Feb, 2002.
    [11] M. Abrams, P.C. Becker, Y. Fujimoto, V. O'Byrne, D. Piehler, “FTTP deployments in the United States and Japan-equipment choices and service provider imperatives” IEEE J. Lightwave Tech, Vol.23, pp. 236 – 246, Jan. 2005.
    [12] M. Nakamura, H. Ueda, S. Makino, T. Yokotani, K. Oshima, “Proposal of Networking by PON Technologies for Full and Ethernet Services in FTTx” IEEE J. Lightwave Tech, vol.22, pp. 2631 – 2640, Nov. 2004
    [13] G.. Keiser, “FTTX Concepts and Application” Willy, 2006
    [14] S. Lallukka, P .Raatikainen, “Link utilization and comparison of EPON and GPON access network cost” IEEE Global Communication, vol.1, pp. 301-305, 2005
    [15] J.D. Angelopoulos, H.-C. Leligou, T. Argyriou, S. Zontos, E. Ringoot, T. Van Caenegem, “Efficient transport of packets with QoS in an FSAN-aligned GPON” IEEE Communications Magazine, Vol.42 pp. 92 -98, Feb, 2004.
    [16] S. Hara, R. Prasad, “Overview of multicarrier CDMA” IEEE Communications Magazine, Vol.35, pp. 126 – 133, Dec, 1997.
    [17] J. A. Salehi, “Code division multiple-access techniques in optical fiber network-Part I: Fundamental principles,” IEEE Transactions on Communications, vol. 37, no. 8, pp. 824-833, August 1989.
    [18] J. A. Salehi and C. A. Brackett, “Code division multiple-access Techniques in optical fiber networks-Part II: Systems performance analysis,” IEEE Transactions on Communications, vol. 37, no. 8, pp. 834-842, August 1989.
    [19] Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber bragg-grating-based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technol., vol. 19, no. 9, pp. 1274-1281, September 2001
    [20] E. Marom and O. G. Ramer, “Encoding-decoding optical fiber network,” Electron. Lett., vol. 14, no. 3, pp. 48, 1978.
    [21] C. F. Lam, “To Spread or Not to Spread: The Myths of Optical CDMA,” IEEE LEOS 2000 Annual Mtg., vol. 2, pp. 810–811, Nov. 2000.
    [22] Tancevski, L. and L.A. Rusch, "Impact of the beat noise on the performance of 2-D optical CDMA systems," IEEE Comm. Lett., vol. 4, pp. 264 – 266, Aug. 2000.
    [23] Stok, A.; Sargent, E.H.”Lighting the local area: optical code-division multiple access and quality of service provisioning” IEEE Network, vol. 14, no. 6, pp.42 –46, Nov.-Dec. 2000.
    [24] Y. G. Wen,Y. Zhang, and L. K. Chen, “On Architecture and Limitation of Optical Multiprotocol Label Switching (MPLS) Networks Using Optical-Orthogonal-Code (OOC)/Wavelength Label,” Optical Fiber Technology, vol. 8, no. 1, pp. 43-70, Jan. 2002.
    [25] P. Prucnal, M. Santoro and T. Fan, “Spread spectrum fiber optic local area network using optical processing,” IEEE Network, vol. 4, no. 5, pp. 547-554, May 1986.
    [26] W. C. Kwong, P. Perrier and P. R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks,” IEEE Transactions on Communications, vol. 39, no. 11, pp. 1625-1634, Nov. 1991.
    [27] D. D. Sampson and D. A. Jackson, “Spread spectrum optical fiber network based on pulsed coherent correlation,” Electron. Lett., vol. 26, no. 19, pp. 1550-1552, Sept. 1990.
    [28] R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Optical phase coding for code division multiple access,” IEEE Photon. Technol. Lett., vol. 4, no. 12, pp. 1401-1404, Dec. 1992.
    [29] D. Sampson, R. A. Griffin, and D. A. Jackson, “Photonic CDMA by coherent matched filtering using time-addressed coding in optical ladder networks,” IEEE J. Lightwave Technol., vol. 12, no. 11, pp. 2001-2010, Nov. 1994.
    [30] J. Enriguz-Gabeiras, J. Camany, and R. Fernandez de Caleya, “ Efeect of non ideal and fiber parameters on the performance of an all optical coherent code division multiple access,” in Proceedings of EFOC/LAN’92, pp. 146-151, Paris, June 1992.
    [31] M. Brandt-Pearce and B. Aazhang, “Multiuser detection for optical code division multiple access systems,” IEEE Transactions on Communications, vol. 42, no. 2, pp.1801-1810, Feb./Mar./Apr. 1994.
    [32] D. V. Sarwate and M. B. Pursley, “Crosscorrelation properties of pseudorandom and related sequences,” Proceedings of the IEEE, vol. 68, no. 5, 593-619, May 1980.
    [33] J.A. Salehi, A.M. Weiner, and J.P. Heritage, “Coherent ultrashort light pulse code-division multiple-access communication systems,” J. Lightwave Technol., vol. 8, no. 3, pp. 478-491, March 1990.
    [34] D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Letter, vol. 5, no. 4, pp. 479-482, 1993.
    [35] C.C. Yang, J.F. Huang, and S.P. Tseng, “Optical CDMA network codecs structured with M-sequence codes over waveguide-grating router,” IEEE Photon. Technol. Lett., vol. 16, pp. 641-643, Feb. 2005.
    [36] J. F. Huang, and D. Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes,” IEEE Photon. Technol. Letter, vol. 12, pp. 1252-1254, Sept. 2000.
    [37] M. K. Smit, “New focusing and dispersive planar component based on an optical phase array,” Electron. Lett., vol. 24, pp. 385-386, March 1988.
    [38] H. Takahashi, K. Oda, H. Toba, Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightwave Technol., vol. 13, pp. 47-455, March 1995.
    [39] H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on NxN optical interconnection,” J. Lightwave Technol., vol. 9, pp. 1285- 1287, Sept. 1997.
    [40] M.M. Banat, M. Kavehrad, “Reduction of optical beat interference in SCM/WDMA networks using pseudorandom phase modulation,” J. Lightwave Technol., vol. 12, pp. 1863 - 1868, Sept. 1994.
    [41] Wei Huang; Nakagawa, M.; “Nonlinear effect of direct-sequence CDMA in optical transmission,” Global Telecommunication conference, vol 2, pp. 1185 – 1189 Dec,1994
    [42] Koshy B.J. and Shankar P.M., “Spread-spectrum techniques for fiber-fed microcellular networks,” Vehicular Technology, IEEE Transactions on vol 48, pp. 847 - 857 May 1999.
    [43] F. Khaleghi and M. Kavehrad, “A subcarrier multiplexed CDM optical local area network, theory and experiment,” IEEE Trans. Commun., vol. 43, pp. 75–87, Jan. 1995.
    [44] E.D.J. Smith, R.J. Blaikie, and D.P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Transactions on Communications, vol. 46, pp. 1176-1185, Sept. 1998.
    [45] B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” J. Lightwave Technol., vol. 4, no. 11, pp. 1704-1710, Nov. 1986.
    [46] C.N. Ironside, M. O'Neill, N. Finlayson, E.M. Wright, W. Banyai, C.T. Seaton, G.I. Stegeman, “Guided wave all-optical logic devices,” IEE Colloquium, Non-Linear Optical Waveguides, pp. 15/1 - 15/4, Jun. 1988
    [47] K. Tsukamoto, T. Higashino, T. Nakanishi, S. Komaki, “Direct optical switching code-division multiple-access system for fiber-optic radio highway networks,” J. Lightwave Technol., vol. 21, pp. 3209 - 3220, Dec. 2003.
    [48] S. J. Park, K. Tsukamoto, and S. Komaki, “Polarity-reversing type photonic receiving scheme for optical CDMA signal in radio highway,” IEICE Trans. Electron., vol. E81-C, no. 3, pp. 462-467, March 1998

    下載圖示 校內:2007-07-19公開
    校外:2007-07-19公開
    QR CODE