簡易檢索 / 詳目顯示

研究生: 張凱禮
Chang, Kai-Li
論文名稱: 蛋白質精胺酸甲基轉移酶4在大腸直腸癌之功能性研究
Functional study of protein arginine methyltransferase 4 in colorectal cancer
指導教授: 蔡少正
Tsai, Shaw-Jenq
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 86
中文關鍵詞: 蛋白質精氨酸甲基轉移酶4雙特異性去磷酸酶-2大腸直腸癌
外文關鍵詞: PRMT4, DUSP2, colorectal cancer
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大腸直腸癌是世界上最常見的癌症之一,但是目前仍有許多的挑戰存在於大腸直腸癌的診斷以及治療中。先前雙特異性去磷酸酶-2(Dual-Specificity Phosphatase-2, DUSP2),一種可以將同一個受質上的磷酸化絲氨酸以及磷酸化蘇氨酸去磷酸化的去磷酸酶,已經被發現主要透過抑制細胞外調節蛋白激酶(Extracellular signal Regulated-Kinase, ERK)訊息傳遞在大腸直腸癌中扮演抑制腫瘤的角色。然而,目前仍然不知道DUSP2是否能夠透過辨識並去磷酸化其他的受質來調控其他訊息傳遞路徑。先前透過質譜分析而鑑定出蛋白質精氨酸甲基轉移酶4 (Protein Arginine Methyl Transferase 4, PRMT4)是一個和DUSP2互動的蛋白質。PRMT4是一個表觀遺傳調控子,主要是造成啟動子上組蛋白H3的第17個精氨酸的非對稱性雙甲基化修飾來促使靶基因表現。為了驗證PRMT4和DUSP2的交互作用,我們利用PRMT4和DUSP2的免疫共沈澱實驗展示出DUSP2會透過PRMT4上的蘇氨酸-任意氨基酸-酪氨酸模體與PRMT4互動。這項發現進一步被共軛焦免疫螢光顯微鏡所拍攝的影像所證實,結果顯示PRMT4與DUSP2的表現位置相互重疊。為了進一步推斷DUSP2對於PRMT4的調節性效果,我們利用基因富集分析(Gene Set Enrichment Analysis, GSEA)來分析過度表現PRMT4的細胞以及過度表現DUSP2的細胞之表現資料譜(expression profile),結果發現DUSP2可能負向調控PRMT4的功能。這個假說被進一步透過PRMT4和DUSP2共表現實驗所證實了,結果顯示DUSP2透過磷酸酶活性破壞PRMT4的穩定性。為了進一步調查PRMT4上調如何參與在大腸直腸癌惡化中,我們利用免疫墨點法來偵測PRMT4在多種大腸直腸癌細胞株中的表現量,結果發現,相對於正常結腸上皮細胞, PRMT4在大腸直腸癌細胞株中有較多的表現量,表示PRMT4可能和較差的預後有關。為了更進一步描繪PRMT4的致癌性角色,我們分析了公開的染色質免疫沈澱定序(Chromatin ImmunoPrecipitation Sequencing, ChIP-seq)和核糖核酸定序(RNA Sequencing, RNA-seq)來鑑定出PRMT4的下游調控基因,MYC原致癌基因蛋白(MYC Proto-Oncogene Protein, MYC),PRMT4的其中一個下游調控基因被發現在抑制PRMT4表現後進而導致其表現下調的情形,而在抑制DUSP2表現後則重現表現上調的情形,顯示MYC是PRMT4-DUSP2軸的下游調控基因。更進一步的實驗顯示PRMT4敲落會延後細胞週期的進程,也會敏化細胞對於歐利普(Oxaliplatin)的處理。總的來說,我們發現了PRMT4是DUSP2的一個新穎的受質且由於DUSP2喪失所造成的PRMT4上調會促進大腸直腸癌的進程。

    Colorectal cancer is one of the most prevalent cancer around the world, however, there are many challenges for the diagnosis and treatment of colorectal cancer. Previously, dual-specificity phosphatase-2 (DUSP2), a phosphatase that is able to dephosphorylate phosphothreonine and phosphotyrosine residues within the same substrate, has been shown to play a tumor suppressive role in colorectal cancer primarily through inactivating ERK signaling. Nevertheless, it remains a question as to whether DUSP2 recognizes and dephosphorylates other substrates to control other signaling pathways. Previously, protein arginine methyltransferase 4 (PRMT4) was identified as a DUSP2-interacting protein through mass spectrometry analysis. PRMT4 is an epigenetic regulator shown to promote gene expression through catalyzing asymmetric dimethylation of histone H3 at arginine 17 (H3R17me2a) on promoters of its target genes. To validate the interaction between PRMT4 and DUSP2, we utilized co-immunoprecipitation of PRMT4 and DUSP2 to show that DUSP2 interacts with PRMT4 through threonine-X-tyrosine (TXY) motif of PRMT4. This finding was further supported by the confocal fluorescence microscopic images showing PRMT4 colocalized with DUSP2. To infer the regulatory relationship between PRMT4 and DUSP2, we performed the gene set enrichment analysis (GSEA) with the expression profiles of PRMT4-overexpressing and DUSP2-overexpressing cells. The analysis showed that DUSP2 might negatively regulate function of PRMT4. This hypothesis was further validated by the co-expression experiment of PRMT4 and DUSP2 in colorectal cancer cell line. Results showed that DUSP2 destabilized PRMT4 through its phosphatase activity. To further investigate how PRMT4 upregulation is involved in colorectal cancer progression, expression levels of PRMT4 were detected in colorectal cancer cell lines. Results showed that the expression level of PRMT4 was higher in colorectal cancer cell lines compared to normal colon epithelial cell line, suggesting PRMT4 might be associated with poor prognosis of patients with colorectal cancer. To further delineate the oncogenic role of PRMT4, we analyzed the publicly available chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) data to identify target genes of PRMT4. One of the target genes, c-Myc, was shown to be downregulated upon PRMT4 knockdown and upregulated upon DUSP2 knockdown, suggesting c-Myc as a downstream mediator of DUSP2-PRMT4 axis. Further experiments showed that PRMT4 knockdown delayed cell cycle progression and sensitized cells to oxaliplatin treatment. Taken altogether, we have identified PRMT4 as a novel substrate of DUSP2 and the upregulation of PRMT4 resulting from loss-of-DUSP2 would promote colorectal cancer progression.

    Introduction 1 Classification of colorectal cancer 1 Models regarding initiation and progression of cancers 1 MAPK/ERK pathway controls tumor outgrowth 1 Hypoxia-repressed DUSP2 regulates multiple facets of tumorigenesis 2 Wnt/β-catenin pathway is involved in tumorigenesis 3 P53 underlies genome instability of colorectal cancer 3 The role of intestinal stem cells (ISCs) in intestinal homeostasis and colorectal cancer 4 Oncogenic pathways regulate cancer stem cell formation 5 Hypoxia as a tumor microenvironment underlying tumorigenesis and chemoresistance 5 PRMT4 performs arginine methylation on proteins 5 PRMT4 promotes transcription as a coactivator 6 PRMT4 is involved in the regulation of various tumorigenic pathways 6 PRMT4 serves as a potential target for therapeutic intervention 7 Objectives and Specific Aims 8 Materials and Methods 9 Cell culture and treatment 9 Transfection of plasmids 9 RNA interference-mediated knockdown and transfection 10 Propidium iodide (PI) staining for flow cytometry analysis 10 Protein extraction 10 RNA isolation 11 Lowry assay 11 Immunoblotting 11 Reverse transcription and quantitative polymerase chain reaction (RT-qPCR) 12 Co-Immunoprecipitation (Co-IP) 12 Transformation of competent cells with plasmids 13 Minipreparation of plasmid DNA 13 Confocal immunofluorescence microscopy 14 Differential gene expression analysis 14 Gene set enrichment analysis (GSEA) 15 Predication of TxY motif on PRMT4 15 Chromatin immunoprecipitation sequencing (ChIP-seq) data analysis 15 Survival analysis and correlation analysis 15 Soft agar colony formation assay 15 Statistical analysis 16 Results 17 PRMT4 is associated with DUSP2 through TxY motif 17 Confocal immunofluorescent microscopic images show PRMT4 colocalizes with DUSP2 18 DUSP2 negatively regulates target genes of PRMT4 18 DUSP2 destabilizes PRMT4 protein 18 Expression levels of PRMT4 in colorectal cancer cells 19 Bioinformatic prediction of PRMT4’s target genes 19 PRMT4 loss-of-function inhibits PRMT4’s target gene expression 20 DUSP2 knockdown promotes c-Myc expression 21 PRMT4 knockdown delays cell cycle progression 22 PRMT4 promotes expression of genes involved in oxaliplatin resistance 22 PRMT4 is required for the colorectal cancer cells to survive under oxaliplatin treatment 22 Discussion 24 References 28 Appendix 65

    1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 68, 394–424 (2018).
    2. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).
    3. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).
    4. Patterson, K. I., Brummer, T., O’brien, P. M. & Daly, R. J. Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem. J. 418, 475–489 (2009).
    5. Chu, Y., Solski, P. A., Khosravi-Far, R., Der, C. J. & Kelly, K. The Mitogen-activated Protein Kinase Phosphatases PAC1, MKP-1, and MKP-2 Have Unique Substrate Specificities and Reduced Activity in Vivo toward the ERK2 sevenmaker Mutation. J. Biol. Chem. 271, 6497–6501 (1996).
    6. Jeffrey, K. L. et al. Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nat. Immunol. 7, 274–283 (2006).
    7. Lin, S.-C. et al. Suppression of dual-specificity phosphatase–2 by hypoxia increases chemoresistance and malignancy in human cancer cells. J. Clin. Invest. 121, 1905–1916 (2011).
    8. Hou, P.-C. et al. Hypoxia-Induced Downregulation of DUSP-2 Phosphatase Drives Colon Cancer Stemness. Cancer Res. 77, 4305–4316 (2017).
    9. Lin, S.-C., Hsiao, K.-Y., Chang, N., Hou, P.-C. & Tsai, S.-J. Loss of dual-specificity phosphatase-2 promotes angiogenesis and metastasis via up-regulation of interleukin-8 in colon cancer. J. Pathol. 241, 638–648 (2017).
    10. Zilz, N. et al. APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–257 (1992).
    11. Morin, P. J. et al. Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC. Sci. New Ser. 275, 1787–1790 (1997).
    12. Mann, B. et al. Target genes of β-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc. Natl. Acad. Sci. 96, 1603–1608 (1999).
    13. He, T.-C. et al. Identification of c-MYC as a Target of the APC Pathway. Science 281, 1509–1512 (1998).
    14. Tetsu, O. & McCormick, F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).
    15. Yin, Y., Liu, Y.-X., Jin, Y. J., Hall, E. J. & Barrett, J. C. PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature 422, 527–531 (2003).
    16. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).
    17. Pflaum, J., Schlosser, S. & Müller, M. p53 Family and Cellular Stress Responses in Cancer. Front. Oncol. 4, 285 (2014).
    18. Horn, H. F. & Vousden, K. H. Coping with stress: multiple ways to activate p53. Oncogene 26, 1306–1316 (2007).
    19. Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat. 141, 537–561 (1974).
    20. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).
    21. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).
    22. Degirmenci, B. GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. Nature 558, 449–453 (2018).
    23. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).
    24. van der Heijden, M. et al. Bcl-2 is a critical mediator of intestinal transformation. Nat. Commun. 7, 10916 (2016).
    25. Schwitalla, S. et al. Loss of p53 in Enterocytes Generates an Inflammatory Microenvironment Enabling Invasion and Lymph Node Metastasis of Carcinogen-Induced Colorectal Tumors. Cancer Cell 23, 93–106 (2013).
    26. Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002).
    27. Mathieu, J. et al. HIF Induces Human Embryonic Stem Cell Markers in Cancer Cells. Cancer Res. 71, 4640–4652 (2011).
    28. Bedford, M. T. & Clarke, S. G. Protein Arginine Methylation in Mammals: Who, What, and Why. Mol. Cell 33, 1–13 (2009).
    29. Fujiwara, T. et al. CARM1 Regulates Proliferation of PC12 Cells by Methylating HuD. Mol. Cell. Biol. 26, 2273–2285 (2006).
    30. Cheng, D. et al. CARM1 methylates MED12 to regulate its RNA-binding ability. Life Sci. Alliance 1, e201800117 (2018).
    31. Kowenz-Leutz, E., Pless, O., Dittmar, G., Knoblich, M. & Leutz, A. Crosstalk between C/EBPβ phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. EMBO J. 29, 1105–1115 (2010).
    32. Zhao, H., Zhang, Y., Dai, H., Zhang, Y. & Shen, Y. CARM1 Mediates Modulation of Sox2. PLoS ONE 6, e27026 (2011).
    33. Chen, D., Huang, S.-M. & Stallcup, M. R. Synergistic, p160 Coactivator-dependent Enhancement of Estrogen Receptor Function by CARM1 and p300. J. Biol. Chem. 275, 40810–40816 (2000).
    34. Bauer, U.-M. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep. 3, 39–44 (2002).
    35. Daujat, S. et al. Crosstalk between CARM1 Methylation and CBP Acetylation on Histone H3. Curr. Biol. 12, 2090–2097 (2002).
    36. Lee, Y.-H., Coonrod, S. A., Kraus, W. L., Jelinek, M. A. & Stallcup, M. R. Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc. Natl. Acad. Sci. 102, 3611–3616 (2005).
    37. Feng, Q., Yi, P., Wong, J. & O’Malley, B. W. Signaling within a Coactivator Complex: Methylation of SRC-3/AIB1 Is a Molecular Switch for Complex Disassembly. Mol. Cell. Biol. 26, 7846–7857 (2006).
    38. Wang, L. et al. MED12 methylation by CARM1 sensitizes human breast cancer cells to chemotherapy drugs. Sci. Adv. 1, e1500463 (2015).
    39. Peng, B. et al. A hypermethylation strategy utilized by enhancer-bound CARM1 to promote estrogen receptor α-dependent transcriptional activation and breast carcinogenesis. Theranostics 10, 3451–3473 (2020).
    40. Kim, Y.-R. et al. Differential CARM1 Expression in prostate and colorectal cancers. BMC Cancer 10, 197 (2010).
    41. Jayne, S., Rothgiesser, K. M. & Hottiger, M. O. CARM1 but not Its Enzymatic Activity Is Required for Transcriptional Coactivation of NF-κB-Dependent Gene Expression. J. Mol. Biol. 394, 485–495 (2009).
    42. An, W., Kim, J. & Roeder, R. G. Ordered Cooperative Functions of PRMT1, p300, and CARM1 in Transcriptional Activation by p53. Cell 117, 735–748 (2004).
    43. Ou, C.-Y. et al. A Coactivator Role of CARM1 in the Dysregulation of β-Catenin Activity in Colorectal Cancer Cell Growth and Gene Expression. Mol. Cancer Res. 9, 660–670 (2011).
    44. Peri, S. Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res. 32, 497D – 501 (2004).
    45. Sievers, F. & Higgins, D. G. Clustal Omega, Accurate Alignment of Very Large Numbers of Sequences. in Multiple Sequence Alignment Methods (ed. Russell, D. J.) vol. 1079 105–116 (Humana Press, 2014).
    46. Rohan, P. J. et al. PAC-1: A Mitogen-Induced Nuclear Protein Tyrosine Phosphatase. Sci. New Ser. 259, 1763–1766 (1993).
    47. Farooq, A. et al. Solution Structure of the MAPK Phosphatase PAC-1 Catalytic Domain: Insights into Substrate-Induced Enzymatic Activation of MKP. Structure 11, 155–164 (2003).
    48. Fujimoto, T. et al. Overexpression of Human X-box Binding Protein 1 (XBP-1) in Colorectal Adenomas and Adenocarcinomas. Anticancer Res. 27, 127–132 (2007).
    49. Li, H. et al. XBP1 induces snail expression to promote epithelial- to-mesenchymal transition and invasion of breast cancer cells. Cell. Signal. 27, 82–89 (2015).
    50. Romero-Ramirez, L. et al. XBP1 Is Essential for Survival under Hypoxic Conditions and Is Required for Tumor Growth. Cancer Res. 64, 5943–5947 (2004).
    51. Li, M., Makkinje, A. & Damuni, Z. The Myeloid Leukemia-associated Protein SET Is a Potent Inhibitor of Protein Phosphatase 2A. J. Biol. Chem. 271, 11059–11062 (1996).
    52. Hung, M.-H. et al. Upregulation of the oncoprotein SET determines poor clinical outcomes in hepatocellular carcinoma and shows therapeutic potential. Oncogene 35, 4891–4902 (2016).
    53. Liu, H. et al. SET-mediated NDRG1 inhibition is involved in acquisition of epithelial-to-mesenchymal transition phenotype and cisplatin resistance in human lung cancer cell. Cell. Signal. 26, 2710–2720 (2014).
    54. Leopoldino, A. M. et al. SET protein accumulates in HNSCC and contributes to cell survival: Antioxidant defense, Akt phosphorylation and AVOs acidification. Oral Oncol. 48, 1106–1113 (2012).
    55. Cristóbal, I. et al. Deregulation of SET is Associated with Tumor Progression and Predicts Adverse Outcome in Patients with Early-Stage Colorectal Cancer. J. Clin. Med. 8, 346 (2019).
    56. Sobral, L. M. et al. Stable SET knockdown in head and neck squamous cell carcinoma promotes cell invasion and the mesenchymal-like phenotype in vitro, as well as necrosis, cisplatin sensitivity and lymph node metastasis in xenograft tumor models. Mol. Cancer 13, 32 (2014).
    57. Cappellen, D., Schlange, T., Bauer, M., Maurer, F. & Hynes, N. E. Novel c‐MYC target genes mediate differential effects on cell proliferation and migration. EMBO Rep. 8, 70–76 (2007).
    58. Wang, H. et al. c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene 27, 1905–1915 (2008).
    59. Nair, S. K. & Burley, S. K. X-Ray Structures of Myc-Max and Mad-Max Recognizing DNA: Molecular Bases of Regulation by Proto-Oncogenic Transcription Factors. Cell 112, 193–205 (2003).
    60. Liu, X., Tesfai, J., Evrard, Y. A., Dent, S. Y. R. & Martinez, E. c-Myc Transformation Domain Recruits the Human STAGA Complex and Requires TRRAP and GCN5 Acetylase Activity for Transcription Activation. J. Biol. Chem. 278, 20405–20412 (2003).
    61. Chang, T.-C. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat. Genet. 40, 43–50 (2008).
    62. Hermeking, H. et al. Identification of CDK4 as a target of c-MYC. Proc. Natl. Acad. Sci. 97, 2229–2234 (2000).
    63. Osthus, R. C. et al. Deregulation of Glucose Transporter 1 and Glycolytic Gene Expression by c-Myc. J. Biol. Chem. 275, 21797–21800 (2000).
    64. Li, F. et al. Myc Stimulates Nuclearly Encoded Mitochondrial Genes and Mitochondrial Biogenesis. Mol. Cell. Biol. 25, 6225–6234 (2005).
    65. Cole, M. D. & Cowling, V. H. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat. Rev. Mol. Cell Biol. 9, 810–815 (2008).
    66. Hoyt, R. et al. Cutting Edge: Selective Tyrosine Dephosphorylation of Interferon-Activated Nuclear STAT5 by the VHR Phosphatase. J. Immunol. 179, 3402–3406 (2007).
    67. Wang, H., Cheng, Z. & Malbon, C. C. Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett. 191, 229–237 (2003).
    68. Vicent, S. Mitogen-Activated Protein Kinase Phosphatase-1 Is Overexpressed in Non-Small Cell Lung Cancer and Is an Independent Predictor of Outcome in Patients. Clin. Cancer Res. 10, 3639–3649 (2004).
    69. Denkert, C. et al. Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. Int. J. Cancer 102, 507–513 (2002).
    70. Wang, Z., Xu, J., Zhou, J.-Y., Liu, Y. & Wu, G. S. Mitogen-Activated Protein Kinase Phosphatase-1 Is Required for Cisplatin Resistance. Cancer Res. 66, 8870–8877 (2006).
    71. Gao, Y. et al. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci. Rep. 6, 19874 (2016).
    72. Powers, M. A., Fay, M. M., Factor, R. E., Welm, A. L. & Ullman, K. S. Protein Arginine Methyltransferase 5 Accelerates Tumor Growth by Arginine Methylation of the Tumor Suppressor Programmed Cell Death 4. Cancer Res. 71, 5579–5587 (2011).
    73. Nakakido, M. et al. PRMT6 increases cytoplasmic localization of p21CDKN1A in cancer cells through arginine methylation and makes more resistant to cytotoxic agents. Oncotarget 6, 30957–30967 (2015).
    74. He, W. et al. A role for the arginine methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage. Nucleic Acids Res. 39, 4719–4727 (2011).
    75. Lupien, M. et al. Coactivator Function Defines the Active Estrogen Receptor Alpha Cistrome. Mol. Cell. Biol. 29, 3413–3423 (2009).
    76. Wang, L. et al. CARM1 Methylates Chromatin Remodeling Factor BAF155 to Enhance Tumor Progression and Metastasis. Cancer Cell 25, 21–36 (2014).
    77. Zhong, X.-Y. et al. CARM1 Methylates GAPDH to Regulate Glucose Metabolism and Is Suppressed in Liver Cancer. Cell Rep. 24, 3207–3223 (2018).
    78. Higashimoto, K., Kuhn, P., Desai, D., Cheng, X. & Xu, W. Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proc. Natl. Acad. Sci. 104, 12318–12323 (2007).
    79. Feng, Q. et al. Biochemical Control of CARM1 Enzymatic Activity by Phosphorylation. J. Biol. Chem. 284, 36167–36174 (2009).
    80. Bretones, G., Delgado, M. D. & León, J. Myc and cell cycle control. Biochim. Biophys. Acta BBA - Gene Regul. Mech. 1849, 506–516 (2015).
    81. Elbadawy, M., Usui, T., Yamawaki, H. & Sasaki, K. Emerging Roles of C-Myc in Cancer Stem Cell-Related Signaling and Resistance to Cancer Chemotherapy: A Potential Therapeutic Target Against Colorectal Cancer. Int. J. Mol. Sci. 20, 2340 (2019).
    82. Zhang, H., Wang, P., Lu, M., Zhang, S. & Zheng, L. c‑Myc maintains the self‑renewal and chemoresistance properties of colon cancer stem cells. Oncol. Lett. 17, 4487–4493 (2019).

    無法下載圖示 校內:2025-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE