| 研究生: |
賴孟承 Lai, Meng-Cheng |
|---|---|
| 論文名稱: |
石斑魚HSP60伴侶蛋白的結構研究揭示了環狀組裝的調節機制 Structural basis for the grouper HSP60 chaperonin revealed the regulatory mechanisms of ring assembly |
| 指導教授: |
林士鳴
Lin, Shih-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 分子伴侶蛋白 、60 kDa 熱休克蛋白 、蛋白質寡聚 、蛋白質晶體學 、ATP水解酶活性 |
| 外文關鍵詞: | Chaperonin, Sixty-kDa heat shock proteins, Protein oligomerization, Protein crystallography, ATPase activity |
| 相關次數: | 點閱:92 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
60kDa熱休克蛋白(HSP60)是細胞中歸類為第一型分子伴侶蛋白家族的成員之一,能夠組裝成七聚體單環的構型,兩個環會進一步形成桶狀十四聚體,主要在粒線體中負責協助摺疊多種重要蛋白。近期研究發現人類HSP60聚合成七聚體的穩定性受環境溫度和核苷酸存在的影響。為了探討真核HSP60寡聚化的機制,本研究分析了硬骨魚類的HSP60的構型變化和生化活性。本研究中,最後建構出解析度2.4 Å的點帶石斑魚HSP60 (EcHSP60)二聚體晶體結構,以及解析度3.4 Å的七聚體結構。進一步比較二聚體及七聚體的蛋白單元,本研究發現HSP60蛋白質兩端摺疊成的赤道域有明顯的排列差異,表示赤道域在七聚體的組成扮演重要的腳色。此外也發現多聚體的構型也會受核苷酸的影響而進一步聚合或離散,且二聚體失去了七聚體具有的水解ATP活性。綜上所述,這些數據提供了對HSP60寡聚化的詳細機制及其在調節分子伴侶活性中的功能性作用的見解。
Sixty-kDa heat shock proteins (HSP60), one member of the group I chaperonin that assists the correct folding of polypeptides in mitochondria. Several studies have revealed that HSP60 assembled into a single-ringed homo-heptamers, and two of which can associate to form a stable football-shaped tetradecamer for protein folding activity. However, recent studies showed that human HSP60 could mainly formed a stable single-ring heptamer, and the stability of these human HSP60 oligomer is affected by environmental temperature and the presence of nucleotides. However, the detailed molecular mechanism of HSP60 conformational changes remain unclear. In order to understand the mechanism behind the oligomerization of eukaryotic HSP60, we studied the biochemical activities and conformational changes of a teleost HSP60. Here, we successfully solved the crystal structure of dimeric Epinephelus coioides HSP60 (EcHSP60) at 2.4 Å resolution and a heptameric structure of EcHSP60 at 3.4 Å resolution. The heptameric structure showed a trans-form single-ring conformation, which refers to the state without binding to HSP10 and the substrates in the protein folding cycle. Comparison of dimeric and heptameric EcHSP60 structure revealed that the equatorial domain of EcHSP60 undergoes a significant movement when EcHSP60 constructed heptamer. Furthermore, enzymatic analysis revealed that the heptameric EcHSP60 hydrolyzed ATP normally but the dimeric EcHSP60 lost the ATPase function. Taken together, these data provide insights to the detailed mechanism of HSP60 oligomerization and its functional role in regulating the chaperon activity.
郭宛靜,細菌性注射疫苗誘發石斑魚免疫因子基因表現及對保護力之影響,國立成功大學生物科技研究所碩士論文,2016。
陳昱安,以蛋白結構探討坎氏弧菌抗原HSP60之免疫原性,國立成功大學生物科技與產業科學系碩士論文,2019。
張晏瑞,利用農桿菌介導之瞬時表現系統量產植物重組蛋白之研究,國立成功大學生物科技與產業科學系碩士論文,2020。
Albrecht, C., Elliott, J.I., Sardini, A., Litman, T., Stieger, B., Meier, P.J., and Higgins, C.F. Functional analysis of candidate ABC transporter proteins for sitosterol transport. Biochimica et Biophysica Acta (BBA) - Biomembranes 1567, 133-142, 2002.
Anfinsen, C.B., Haber, E., Sela, M., and White, F.H. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proceedings of the National Academy of Sciences of the United States of America 47, 1309-1314, 1961.
Ansari, M.Y., and Mande, S.C. A Glimpse Into the Structure and Function of Atypical Type I Chaperonins. Frontiers in Molecular Biosciences 5, 31, 2018.
Atha, D.H., and Riggs, A. Tetramer-dimer dissociation in homoglobin and the Bohr effect. Journal of Biological Chemistry 251, 5537-5543, 1976.
Baldwin, R.L. The search for folding intermediates and the mechanism of protein folding. Annual Review of Biophysics 37, 1-21, 2008.
Chaston, J.J., Smits, C., Aragão, D., Wong, A.S.W., Ahsan, B., Sandin, S., Molugu, S.K., Molugu S.K., Bernal, R.A., Stock, D., Stewart, A.G. Structural and Functional Insights into the Evolution and Stress Adaptation of Type II Chaperonins. Structure 24, 364-374, 2016.
Cheng, M.Y., Hartl, F.U., and Horwich, A.L. The mitochondrial chaperonin hsp60 is required for its own assembly. Nature 348, 455-458, 1990.
Chiancone, E. Dissociation of hemoglobin into subunits. II. Human oxyhemoglobin: gel filtration studies. Journal of Biological Chemistry 243, 1212-1219, 1968.
Choi, B., Choi, M., Park, C., Lee, E.K., Kang, D.H., Lee, D.J., Yeom, J.Y., Jung, Y., Kim, J., Lee, S., and Kang, S.W. Cytosolic HSP60 orchestrates the survival and inflammatory responses of vascular smooth muscle cells in injured aortic vessels. Cardiovascular Research 106, 498-508, 2015.
Dafforn, T.R. So how do you know you have a macromolecular complex? Acta Crystallographica Section D: Biological Crystallography 63, 17-25, 2007.
Das, S.K., Xiang, T.W., Noor, N.M., De, M., Mazumder, S.K., and Goutham-Bharathi, M.P. Temperature physiology in grouper (Epinephelinae: Serranidae) aquaculture: A brief review. Aquaculture Reports 20, 100682, 2021.
Ding, J., Li, J., Yang, D., Yang, F., Nie, H., Huo, Z., and Yan, X. Molecular characteristics of a novel HSP60 gene and its differential expression in Manila clams (Ruditapes philippinarum) under thermal and hypotonic stress. Cell Stress Chaperones 23, 179-187, 2018.
Dubaquié, Y., Looser, R., and Rospert, S. Significance of chaperonin 10-mediated inhibition of ATP hydrolysis by chaperonin 60. Proceedings of the National Academy of Sciences of the United States of America 94, 9011- 9016, 1997.
Enriquez, A.S., Rojo, H.M., Bhatt, J.M., Molugu, S.K., Hildenbrand, Z.L., and Bernal, R.A. The human mitochondrial HSP60 in the APO conformation forms a stable tetradecameric complex. Cell Cycle 16, 1309-1319, 2017.
Fan, F., Duan, Y., Yang, F., Trexler, C., Wang, H., Huang, L., Li, Y., Tang, H., Wang, G., Fang, X., Liu, J., Jia, N., Chen, J., and Ouyang, K. Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death and Differentiation 27, 587-600, 2020.
Fang, Y.C., and Cheng, M. The effect of C-terminal mutations of HSP60 on protein folding. Journal of Biomedical Science 9, 223-233, 2002.
Fayet, O., Ziegelhoffer, T., and Georgopoulos, C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. Journal of Bacteriology 171, 1379-1385, 1989.
Frauenfelder, H., Petsko, G.A., and Tsernoglou, D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280, 558-563, 1979.
Fu, K.K., Fu, C., Qin, Y.L., Bai, Y., and Fu, S.J. The thermal acclimation rate varied among physiological functions and temperature regimes in a common cyprinid fish. Aquaculture 495, 393-401, 2018.
Gestwicki, J.E., and Shao, H. Inhibitors and chemical probes for molecular chaperone networks. Journal of Biological Chemistry 294, 2151-2161, 2019.
Gomez-Llorente, Y., Jebara, F., Patra, M., Malik, R., Nisemblat, S., Chomsky-Hecht, O., Parnas, A., Azem, A., Hirsch, J.A., and Ubarretxena-Belandia, I. Structural basis for active single and double ring complexes in human mitochondrial HSP60-HSP10 chaperonin. Nature Communications 11, 1916, 2020.
Grantham, J. The Molecular Chaperone CCT/TRiC: An Essential Component of Proteostasis and a Potential Modulator of Protein Aggregation. Frontiers in Genetics 11, 172, 2020.
Griffon, N., Baudin, V., Dieryck, W., Dumoulin, A., Pagnier, J., Poyart, C., and Marden, M.C. Tetramer-dimer equilibrium of oxyhemoglobin mutants determined from auto-oxidation rates. Protein Science 7, 673-680, 1998.
Gutsche, I., Essen, L.O., and Baumeister, W. Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. Journal of Molecular Biology 293, 295-312, 1999.
Höhfeld, J., and Hartl, F.U. Role of the chaperonin cofactor HSP10 in protein folding and sorting in yeast mitochondria. Journal of Cell Biology 126, 305-315, 1994.
Hartl, F.U., and Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858, 2002.
Hayer-Hartl, M.K., Martin, J., and Hartl, F.U. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science 269, 836-841, 1995.
Horwich, A.L., Farr, G.W., and Fenton, W.A. GroEL-GroES-mediated protein folding. Chemical Reviews 106, 1917-1930, 2006.
Horwich, A.L., Fenton, W.A., Chapman, E., and Farr, G.W. Two families of chaperonin: physiology and mechanism. Annual Review of Cell and Developmental Biology 23, 115-145, 2007.
Hsu, Y.D., Huang, Y.F., Pan, Y.J., Huang, L.K., Liao, Y.Y., Lin, W.H., Liu, T.Y., Lee, C.H., and Pan, R.L. Regulation of H(+)-pyrophosphatase by 14-3-3 Proteins from Arabidopsis thaliana. The Journal of Membrane Biology 251, 263-276, 2018.
Huang, H., Zhang, X., Li, S., Liu, N., Lian, W., McDowell, E., Zhou, P., Zhao, C., Guo, H., Zhang, C., Yang, C., Wen, G., Dong, X., Lu, L., Ma, N., Dong, W., Dou, Q.P., Wang, X., and Liu, J. Physiological levels of ATP negatively regulate proteasome function. Cell Research 20, 1372-1385, 2010.
Hvidsten, T.R., Lægreid, A., Kryshtafovych, A., Andersson, G., Fidelis, K., and Komorowski, J. A Comprehensive Analysis of the Structure-Function Relationship in Proteins Based on Local Structure Similarity. PLoS One 4, e6266, 2009.
Ishida, R., Okamoto, T., Motojima, F., Kubota, H., Takahashi, H., Tanabe, M., Oka, T., Kitamura, A., Kinjo, M., Yoshida, M., Otaka, M., Grave, E., and Itoh, H. Physicochemical Properties of the Mammalian Molecular Chaperone HSP60. International Journal of Molecular Sciences 19, 489, 2018.
Karlin, S., and Brocchieri, L. Heat shock protein 60 sequence comparisons: Duplications, lateral transfer, and mitochondrial evolution. Proceedings of the National Academy of Sciences of the United States of America 97, 11348- 11353, 2000.
Kendrew, J.C., Bodo, G., Dintzis, H.M., Parrish, R.G., Wyckoff, H., and Phillips, D.C. A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis. Nature 181, 662-666, 1958.
Kerbler, S.M., Taylor, N.L., and Millar, A.H. Cold sensitivity of mitochondrial ATP synthase restricts oxidative phosphorylation in Arabidopsis thaliana. New Phytologist 221, 1776-1788, 2019.
Klebl, D.P., Feasey, M.C., Hesketh, E.L., Ranson, N.A., Wurdak, H., Sobott, F., Bon, R.S., and Muench, S.P. Cryo-EM structure of human mitochondrial HSPD1. iScience 24, 102022, 2021.
Leist, M., Single, B., Castoldi, A.F., Kühnle, S., and Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. Journal of Experimental Medicine 185, 1481-1486, 1997.
Levy-Rimler, G., Viitanen, P., Weiss, C., Sharkia, R., Greenberg, A., Niv, A., Lustig, A., Delarea, Y., and Azem, A. The effect of nucleotides and mitochondrial chaperonin 10 on the structure and chaperone activity of mitochondrial chaperonin 60. European Journal of Biochemistry 268, 3465-3472, 2001.
Luo, J., Guo, Y., Fu, Y., Wang, Y., Li, W., and Li, M. Effective discrimination between biologically relevant contacts and crystal packing contacts using new determinants. Proteins 82, 3090-3100, 2014.
Mendoza, J.A., Ignacio, J.L., and Buckley, C.M. The HSP60 Protein of Helicobacter Pylori Exhibits Chaperone and ATPase Activities at Elevated Temperatures. BioChem 1, 19-25, 2021.
Meng, Q., Li, B.X., and Xiao, X. Toward Developing Chemical Modulators of HSP60 as Potential Therapeutics. Frontiers in Molecular Biosciences 5, 35, 2018.
Miyamoto, Y., Megumi, F.T., Hasegawa, N., Eguchi, T., Tanoue, A., Tamura, H., and Yamauchi, J. Data supporting mitochondrial morphological changes by SPG13-associated HSPD1 mutants. Data in Brief 6, 482-488, 2016.
Nguyen, B., Ma, R., Tang, W.K., Shi, D., and Tolia, N.H. Crystal structure of P. falciparum Cpn60 bound to ATP reveals an open dynamic conformation before substrate binding. Scientific Reports 11, 5930, 2021.
Nisemblat, S., Yaniv, O., Parnas, A., Frolow, F., and Azem, A. Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proceedings of the National Academy of Sciences of the United States of America 112, 6044-6049, 2015.
Okamoto, T., Yamamoto, H., Kudo, I., Matsumoto, K., Odaka, M., Grave, E., and Itoh, H. HSP60 possesses a GTPase activity and mediates protein folding with HSP10. Scientific Reports 7, 16931, 2017.
Pamenter, M.E., Lau, G.Y., and Richards, J.G. Effects of cold on murine brain mitochondrial function. PLoS One 13, e0208453, 2018.
Parnas, A., Nadler, M., Nisemblat, S., Horovitz, A., Mandel, H., and Azem, A. The MitCHAP-60 disease is due to entropic destabilization of the human mitochondrial HSP60 oligomer. Journal of Biological Chemistry 284, 28198-28203, 2009.
Petoukhov, M.V., and Svergun, D.I. Applications of small-angle X-ray scattering to biomacromolecular solutions. The International Journal of Biochemistry and Cell Biology 45, 429-437, 2013.
Politi, L., Chiancone, E., Giangiacomo, L., Cervoni, L., Scotto d'Abusco, A., Scorsino, S., and Scandurra, R. pH-, temperature- and ion-dependent oligomerization of Sulfolobus solfataricus recombinant amidase: a study with site-specific mutants. Archaea 2, 221-231, 2009.
Rye, H.S., Roseman, A.M., Chen, S., Furtak, K., Fenton, W.A., Saibil, H.R., and Horwich, A.L. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97, 325-338, 1999.
Scotto D'Abusco, A., Casadio, R., Tasco, G., Giangiacomo, L., Giartosio, A., Calamia, V., Di Marco, S., Chiaraluce, R., Consalvi, V., Scandurra, R., and Politi, L. Oligomerization of Sulfolobus solfataricus signature amidase is promoted by acidic pH and high temperature. Archaea 1, 411-423, 2005.
Singh, B., Patel, H.V., Ridley, R.G., Freeman, K.B., and Gupta, R.S. Mitochondrial import of the human chaperonin (HSP60) protein. Biochemical and Biophysical Research Communications 169, 391-396, 1990.
Soltys, B.J., and Gupta, R.S. Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (HSP60) in mammalian cells. Experimental Cell Research 222, 16-27, 1996.
Su, X.D., Zhang, H., Terwilliger, T.C., Liljas, A., Xiao, J., and Dong, Y. Protein Crystallography from the Perspective of Technology Developments. Crystallography Reviews 21, 122-153, 2015.
Suzuki, K., Mizutani, K., Maruyama, S., Shimono, K., Imai, F.L., Muneyuki, E., Kakinuma, Y., Ishizuka-Katsura, Y., Shirouzu, M., Yokoyama, S., Yamato, I., and Murata, T. Crystal structures of the ATP-binding and ADP-release dwells of the V(1) rotary motor. Nature Communications 7, 13235, 2016.
Venner, T.J., and Gupta, R.S. Nucleotide sequence of mouse HSP60 (chaperonin, GroEL homolog) cDNA. Biochim Biophys Acta(BBA) - Gene Structure and Expression 1087, 336-338, 1990.
Viitanen, P.V., Lorimer, G., Bergmeier, W., Weiss, C., Kessel, M., and Goloubinoff, P. Purification of mammalian mitochondrial chaperonin 60 through in vitro reconstitution of active oligomers. Methods in Enzymology 290, 203-217, 1998.
Viitanen, P.V., Lorimer, G.H., Seetharam, R., Gupta, R.S., Oppenheim, J., Thomas, J.O., and Cowan, N.J. Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring. Journal of Biological Chemistry 267, 695-698, 1992.
Vilasi, S., Bulone, D., Caruso Bavisotto, C., Campanella, C., Marino Gammazza, A., San Biagio, P.L., Cappello, F., Conway de Macario, E., and Macario, A.J.L. Chaperonin of Group I: Oligomeric Spectrum and Biochemical and Biological Implications. Frontiers in Molecular Biosciences 4, 99, 2017.
Vilasi, S., Carrotta, R., Mangione, M.R., Campanella, C., Librizzi, F., Randazzo, L., Martorana, V., Marino Gammazza, A., Ortore, M.G., Vilasi, A., Pocsfalvi, G., Burgio, G., Corona, D., Palumbo Piccionello, A., Zummo, G., Bulone, D., Conway de Macario, E., Macario, A.J.L., San Biagio, P.L., and Cappello, F. Human HSP60 with Its Mitochondrial Import Signal Occurs in Solution as Heptamers and Tetradecamers Remarkably Stable over a Wide Range of Concentrations. PLoS One 9, e97657, 2014.
Voronina, S.G., Barrow, S.L., Simpson, A.W., Gerasimenko, O.V., da Silva Xavier, G., Rutter, G.A., Petersen, O.H., and Tepikin, A.V. Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells. Gastroenterology 138, 1976-1987, 2010.
Wang, J., Enriquez, A.S., Li, J., Rodriguez, A., Holguin, B., Von Salzen, D., Bhatt, J.M., and Bernal, R.A. MitCHAP-60 and Hereditary Spastic Paraplegia SPG-13 Arise from an Inactive hsp60 Chaperonin that Fails to Fold the ATP Synthase β-Subunit. Scientific Reports 9, 12300, 2019.
Xu, Z., and Sigler, P.B. GroEL/GroES: Structure and Function of a Two-Stroke Folding Machine. Journal of Structural Biology 124, 129-141, 1998.
Yifrach, O., and Horovitz, A. Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 34, 5303-5308, 1995.
Yount, R.G., Babcock, D., Ballantyne, W., and Ojala, D. Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a P--N--P linkage. Biochemistry 10, 2484-2489, 1971.
Zhou, L., Xie, J., Ruan, Y., Zhu, H., Wang, W., Yun, X., Guo, L., Gan, H., Sun, L., Yu, M., and Gu, J. Expression and purification of secreted recombinant hsp60 from eukaryotic cells. Protein Expression and Purification 72, 179-183, 2010.