簡易檢索 / 詳目顯示

研究生: 顏于華
Yen, Yu-hua
論文名稱: 玻璃基板上PECVD金屬誘發橫向結晶(MILC)成長低溫奈米複晶矽鍺薄膜電晶體之研究
PECVD MILC Nano SiGe TFT on Glass Substrate for Large Area Flat Panel Display Applications
指導教授: 方炎坤
Fang, Yean-kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 110
中文關鍵詞: 薄膜電晶體矽鍺
外文關鍵詞: TFT, SiGe
相關次數: 點閱:123下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究利用PECVD及金屬橫向結晶(Metal Induced Lateral Crystallization)來低溫(400℃) 成長大面積平面顯示器用奈米矽鍺薄膜電晶體( nc-SiGe TFTs)。不但保有目前非晶矽薄膜技術的優點,而且可以提升其載子遷移率進而提升驅動電流,增加開關電流比。

    吾人發展出不同誘發時間下分別在矽基板以及玻璃基板上製作奈米複晶矽鍺薄膜電晶體的最佳製程參數。並利用FE-SEM、AFM觀察薄膜的表面,HP-4145作為電性量測分析,量測TFT Transfer characteristic和I-V curve,以及使用Raman spectra、XRD等儀器分析薄膜的結晶品質。

    利用雙重閘極介電層,使在矽基板上nc-SiGe TFTs的載子移動率從0.09 cm2/V-s上升至31.7 cm2/V-s,在玻璃基板上nc-SiGe TFTs也有2.5 cm2/V-s的載子移動率。這些載子移動率遠大於在矽基板上nc-Si TFTs 的18.58 cm2/V-s。

    In this thesis, for the first time, we developed the nano silicon germanium thin film transistors (nc-SiGe TFTs) on glass substrate. The nc-SiGe thin films were formed with a novel method of metal induced lateral crystallization (MILC), which is an effective technology and commonly used for preparation low temperature poly silicon films. The nc-SiGe films have a higher mobility than that of amorphous silicon (a-Si) or amorphous silicon germanium (a-SiGe) films, and can be uniformly deposited at low temperature (400℃). The nc-SiGe films growing condition was optimized by tuning a-SiGe depositing temperature in an PECVD system and different MILC anneal time. Furthermore, we also investigated physical and electrical characteristics of the films by FE-SEM, AFM, I/V measurements, Raman spectrum and XRD.
    Finally, we prepared the nc-SiGe TFTs with a SiO2/TiO2 stacked gate oxide structure by the optimized condition. The developed nc-SiGe TFT has a typical drift mobility 31.7 cm2/V-s and 2.5 cm2/V-s on Si and glass substrate, respectively. These values are better than that of 18.58 cm2/V-s for a reported nc-Si TFT prepared by HWCVD on Si substrate.

    中文摘要 I 英文摘要 III 目錄 V 圖表目錄 VII 第一章 前言1 第二章 薄膜電晶體工作理論及金屬橫向誘發結晶原理6 2-1 薄膜電晶體基本結構6 2-2 薄膜電晶體工作原理6 2-2-1 汲極電流相對於汲極電壓的I-V曲線6 2-2-2 汲極電流相對於閘極電壓的I-V曲線8 2-3 薄膜電晶體電性參數10 2-4 金屬誘發結晶及金屬誘發橫向結晶的原理之原理13 2-4-1 金屬金(Au)誘發非晶矽薄膜結晶的原理13 2-4-2 金屬誘發橫向結晶的原理15 2-4-3 金屬誘發奈米結晶矽鍺之探討16 第三章 成長及量測系統與元件製程18 3-1 成長系統18 3-2 基板之清潔(Wafer Clean)18 3-2-1 矽基板之清潔18 3-2-2 玻璃基板之清潔19 3-3 電漿助長化學氣相沉積系統(PECVD)20 3-4 真空蒸著系統(Thermal Vacuum Evaporation System)21 3-5 射頻磁控濺鍍系統(Radio-Frequency Sputtering System)22 3-6 退火系統(Annealing System)24 3-7 量測儀器24 3-7-1 原子力顯微鏡 ( Atomic Force Microscope, AFM )24 3-7-2 場發射掃瞄式電子顯微鏡 ( Field Emission Scanning Electron Microscope, FE-SEM )25 3-7-3 X光繞射儀 ( X-ray Diffractometer, XRD )25 3-7-4 傅立葉轉換紅外線光譜儀 ( Fourier transform infrared spectroscopy , FTIR )26 3-7-5 膜厚量測儀 (α-Step)27 3-7-6 HP4145B27 3-7-7 拉曼光譜儀 (Raman)27 3-7-8 歐傑電子光譜儀(AES)28 第四章 金屬橫向誘發奈米複晶矽鍺薄膜之製作與量測分析29 4-1 奈米複晶矽鍺成長模型29 4-2 奈米複晶矽鍺成長步驟29 4-3 緩衝層對薄膜品質之影響30 4-4 氫氣流量與薄膜品質31 4-4-1 不同氫氣流量下SEM對奈米複晶矽鍺薄膜之分析32 4-4-2 不同氫氣流量下,FTIR、Raman、電性量測及AFM對奈米複晶矽鍺薄膜之分析32 4-5 奈米複晶矽鍺薄膜成份分析34 4-6 不同誘發時間對微表面結構及薄膜特性之影響35 4-7 XRD繞射圖對奈米複晶矽鍺薄膜特性之分析36 4-8 結晶邊界之探討 37 第五章 奈米複晶矽鍺薄膜電晶體製作及分析38 5-1 TFT簡介38 5-1-1 薄膜電晶體結構38 5-1-2 薄膜電晶體原理38 5-2 在矽基板上成長奈米複晶矽鍺TFT39 5-3 矽基板上奈米複晶矽鍺TFT之特性41 5-3-1 TFT ID-VD特性曲線41 5-3-2 次臨界區(Sub-threshold Region) 43 5-3-3 開關電流比(Ion/Ioff)43 5-3-4 載子移動率(Mobility)44 5-4 玻璃基板上奈米複晶矽鍺TFT之特性45 第六章 結論及未來展望47 6-1 結論47 6-2 未來展望48 Reference 50 誌謝109 自述110 圖表目錄 圖1-1 準分子雷射退火 (ELA)54 圖1-2 金屬誘發橫向結晶(MILC)54 圖2-1 薄膜電晶體的構造分為(a)上閘極與(b)下閘極55 圖2-2 薄膜電晶體的構造分為(a)交錯型與(b)共面型55 圖2-3 在微小汲極電壓下,不同閘極驅動電壓的變化56 圖2-4 固定閘極電壓下,電流隨汲極電壓的變化57 圖2-5 汲極電流相對於閘極電壓(IDS-VGS)曲線圖58 圖2-6 三種估計臨限電壓的方法59 圖2-7 n+層和聚積的電洞層,形成逆偏PN接面,避免IOFF的增加60 圖2-8 (a) TFT開啟使液晶可穿透(b) TFT關閉使液晶不可穿透 61 圖2-9 Si藉由Au誘發結晶的過程圖62 圖3-1 PECVD成長系統圖63 圖3-2 蒸著機成長系統圖64 圖3-3 濺鍍機成長系統圖65 圖3-4 退火系統圖66 圖4-1 金屬誘發結晶(MIC)及金屬橫向誘發結晶(MILC)的流程圖67 圖4-2 指叉狀金屬光罩之正面圖68 圖4-3(a) 有無緩衝層對奈米矽鍺薄膜影響FE-SEM照片(倍率二萬倍) 69 圖4-3(b) 有無緩衝層對奈米矽鍺薄膜影響FE-SEM照片(倍率四萬倍) 69 圖4-4 hydrogen chemical annealing 模型70 圖4-5 (a) 當氫氣流量為30sccm,薄膜之FE-SEM圖71 圖4-5 (b) 當氫氣流量為35sccm,薄膜之FE-SEM圖71 圖4-6 (a) 氫氣流量為40sccm,400℃退火1小時之薄膜72 圖4-6 (b) 氫氣流量為40sccm,400℃退火3小時之薄膜72 圖4-6 (c) 氫氣流量為40sccm,400℃退火5小時之薄膜73 圖4-7 不同氫氣流量之傅立葉光譜儀(FTIR)分析74 圖4-8 不同氫氣流量之拉曼(Raman)分析75 圖4-9(a) MSM(metal-semiconductor-metal)結構圖 76 圖4-9(b) 氫氣對奈米複晶矽鍺薄膜電特性影響之I-V曲線圖77 圖4-10(a) AFM對氫氣為30sccm之奈米複晶矽鍺薄膜特性分析78 圖4-10(b) AFM對氫氣為35sccm之奈米複晶矽鍺薄膜特性分析 78 圖4-10(c) AFM對氫氣為40sccm之奈米複晶矽鍺薄膜特性分析 78 圖4-11(a) 奈米複晶矽鍺薄膜金屬橫向結晶(MILC)部分之EDS成分分析79 圖4-11(b) 奈米複晶矽鍺薄膜金屬結晶(MIC)部分之EDS成分分析79 圖4-11(c) 奈米複晶矽鍺薄膜蝕刻後金屬結晶(MIC)部分之EDS成分分析80 圖4-12 奈米複晶矽鍺薄膜之ESCA成分分析81 圖4-13 非晶矽鍺薄膜之FE-SEM分析82 圖4-14(a) 誘發時間ㄧ小時之金屬橫向誘發(MILC)奈米複晶矽鍺薄膜之FE-SEM分析83 圖4-14(b) 誘發時間二小時之金屬橫向誘發(MILC)奈米複晶矽鍺薄膜之FE-SEM分析83 圖4-14(c) 誘發時間三小時之金屬橫向誘發(MILC)奈米複晶矽鍺薄膜之FE-SEM分析84 圖4-14(d) 誘發時間四小時之金屬橫向誘發(MILC)奈米複晶矽鍺薄膜之FE-SEM分析84 圖4-14(e) 誘發時間五小時之金屬橫向誘發(MILC)奈米複晶矽鍺薄膜之FE-SEM分析85 圖4-15(a) 誘發時間ㄧ小時之金屬誘發(MIC)奈米複晶矽鍺薄膜之FE-SEM分析86 圖4-15(b) 誘發時間二小時之金屬誘發(MIC)奈米複晶矽鍺薄膜之FE-SEM分析86 圖4-15(c) 誘發時間三小時之金屬誘發(MIC)奈米複晶矽鍺薄膜之FE-SEM分析87 圖4-15(d) 誘發時間四小時之金屬誘發(MIC)奈米複晶矽鍺薄膜之FE-SEM分析87 圖4-15(e) 誘發時間五小時之金屬誘發(MIC)奈米複晶矽鍺薄膜之FE-SEM分析88 圖4-16(a) 奈米複晶矽鍺薄膜誘發時間ㄧ小時之奈米複晶矽鍺薄膜AFM分析) 89 圖4-16(b) 奈米複晶矽鍺薄膜誘發時間二小時之奈米複晶矽鍺薄膜AFM分析 89 圖4-16(c) 奈米複晶矽鍺薄膜誘發時間三小時之奈米複晶矽鍺薄膜AFM分析 90 圖4-16(d) 奈米複晶矽鍺薄膜誘發時間四小時之奈米複晶矽鍺薄膜AFM分析 90 圖4-16(e) 奈米複晶矽鍺薄膜誘發時間五小時之奈米複晶矽鍺薄膜AFM分析 91 圖4-17 不同退火時間的奈米複晶矽鍺薄膜之粗糙度變化92 圖4-18 不同退火時間之拉曼(Raman)分析 93 圖4-19 不同退火時間之電性 (IV)分析94 圖4-20(a) 利用金屬光罩定義MIC及MILC95 圖4-20(b) 400℃下退火5小時之金屬橫向誘發結晶X-ray繞射圖 95 圖4-20(c) 400℃下退火5小時之金屬誘發結晶X-ray繞射圖96 圖4-21 金屬橫向結晶之邊界97 圖4-22(a) 奈米複晶矽鍺薄膜垂直結晶之情形98 圖4-22(b) 奈米複晶矽鍺薄膜放大圖98 圖5-1 bottom gate TFT結構圖 99 圖5-2 使用TiO2作為氧化層之TFT結構圖 100 圖5-3使用TiO2作為氧化層之TFT ID-VD特性曲線101 圖5-4 使用TiO2與SiO2作為氧化層之TFT結構圖102 圖5-5 使用TiO2與SiO2作為氧化層之TFT ID-VD特性曲線103 圖5-6 使用TiO2 作為氧化層之TFT ID-VG轉換曲線104 圖5-7 使用TiO2與SiO2作為氧化層之TFT ID-VG轉換曲線105 圖5-8 使用TiO2與SiO2作為氧化層之玻璃TFT 結構圖106 圖5-9 使用TiO2與SiO2作為氧化層之玻璃TFT ID-VD特性曲線107 圖5-10 使用TiO2與SiO2作為氧化層之玻璃TFT ID-VG轉換曲線108

    [1] 王文德,方炎坤, ”利用金作低溫金屬誘發橫向結晶(MILC)成長應用於光電元件的複晶矽鍺薄膜之研究”,國立成功大學電機工程學系碩士論文, 2001.

    [2] P. Roca i Cabarrocas, S. Hamma, “Microcrystalline silicon growth on a-Si:H: effects of hydrogen”, Thin Solid Films , vol. 337, pp. 23-26 , 1999.

    [3] T. H. Buyuklimanli, K. Pangal, J. C. Sturm, S. Wanger, “Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films”, Journal of Applied Physics, vol. 85, no. 3, 1999.

    [4] J. I. Hanna, T. Ohuchi, M. Yamamoto, “Direct fabrication of SiGe crystallites on glass substrate: from nanocrystals to microcrystals”, Journal of Non-crystalline Solids, vol. 198-200 , pp. 879-882, 1996.

    [5] 工研院IEK-IT IS計畫,工研院產業經濟與資訊服務中心, 2004.

    [6] T. J. King and K. C. Saraswat, “Polycrystalline Sillicon-Germanium Thin Film Transistors”, IEEE Trans. Electron Devices, vol. 41, no. 9, pp. 1581-1591, 1994.

    [7] 紀國鐘、鄭晃忠, ”液晶顯示器技術手冊”, 經濟部技術處發行, 台灣電子材料與元件協會出版.

    [8] T. Aoyama, G.. Kawachi, N. Konishi, Y. Okajima and K. Miyata, “Crystallization of LPCVD Silicon Films by Low Temperature Annealing”, Journal of the Electrochemistry . Soc., vol. 136, no.4, pp. 1169-1173, 1989.

    [9] S. M. Choe, J. A. Ahn and O. Kim, “Fabrication of Laser Annealed Poly-TFT by Foaming a SixGE1-x Thermal Barrier”, IEEE Electron Device Letters, Vol. 22, No. 3, 2001.

    [10] S. W. Lee, Y. C. Jeon and S. K. Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Letter of Applied Physics, ., 66(13), 27, pp. 1671-1673, 1995.

    [11] J. Young, K. H. Kim and C. Ok Kim, “Low temperature metal induced crystallization of amorphous silicon using a Ni solution”, Journal of Applied Physics, 82(11), pp. 5865-5867, 1997.

    [12] H. Kanno, I. Tsunoda, A. Kenjo, T. Sadoh, S. Tamaguchi, M. Miyao, “Metal-induced solid-phase crystallization of amorphous SiGe film on insulator”, Solid State Devices and Materials, 2002.

    [13] 范盛宏,方炎坤,“金誘發非晶矽橫向結晶層之研製及特性分析”,國立成功大學電機工程學系碩士論文, 1999.

    [14] 林秉章,方炎坤, ”利用層疊氫原子化學回火及電漿輔助化學氣相沉積技術成長低溫奈米矽鍺薄膜之研究”,國立成功大學電機工程學系碩士論文, 2005.

    [15] B. Mebarji, S. Sumiya, R. Yoshida, M. Ito and T. Tsukada, Materials Letters, 41, no. 16, 1999.

    [16] D. Hong, “Process Development and Modeling of Thin-Film Transistors”, Master's Thesis, Oregon State University, 2005.

    [17] J. Puigdollers, C. Voz, A. Orpella, I. Martin, D. Soler, M. Fonrodona, J. Bertomeu, J. Andreu, R. Alcubilla, “Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by hot-wire CVD,” Journal of Non-Crystalline Solids, vol. 299–302, pp. 400–404, 2002.

    [18] K. Lee, M. Shur, T. A. Fjeldly, T. Ytterda, “Semiconductor device modeling for VLSI,”1 ed. New jersey:Prentice Hall, Inc., 1993.

    [19] M. S. Shur, H. C. Slade, M. D. Jacunski, A. A. Owusu, T. Ytterdal, “SPICE models for amorphous silicon and polysilicon thin film transistors,” Journal of the Electrochemical Society, 144, pp. 2833-9, 1997.
    [20] Dosev, D. Konstantinov, “Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition.” ,in PhD thesis. Barcelona: Universitat Politècnica de Catalunya (UPC).

    [21] S. M. Han, J. H. Park, H. S. Shin, Y. H. Choi, M. K. Han,“High Performance Nanocrystalline-Si TFT Fabricated at 150℃ Using ICP-CVD”, IEEE, 2005.

    [22] S. W. Lee, Y. C. Jeon and S. K. Joo ,“Pd induced lateral crystallization of amorphous Si thin films”, Letter of Applied Physics, vol. 66, no. 13, pp.1671-1673, 1995

    [23] S. W. Lee, and S. K. Joo, T. H. Ihn, ,“Fabrication of high-mobility p-channel poly-Si thin film transistors by self-aligned metal-induced lateral vrystallization”, IEEE Trans. Electron Devices,, vol. 17, no. 8, pp. 407-409, 1996

    [24] S. W. Lee, and S. K. Joo ,“Low temperature ploy-Si thin-film transistor fabrication by metal-induced lateral crystallizaion”, IEEE Trans. Electron Devices,, vol. 17, no. 4, pp. 160-162, 1996

    [25] G.. A. Bhat, Z. Jin, H. S. Kwok, M. Wong,“Effects of longitudinal grain boundaries on the preformancd of MILC-TFT’s”, IEEE Trans. Electron Devices,, vol.20, no.2, pp97-99, 1999

    [26] L. Hultman, A. Robertsson, and H.T.G.. Hertzell, “Crystallozation of amorphous silicon during thin-film gold reaction”, Journal of Applied Physics, , vol. 62 ,no. 9, pp. 3647-3655 , 1987

    [27] P. Roca i Cabarrocas, “Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films”, Journal of Non-Crystalline Solids , 266-269 ,31-37 , 2000..

    [28] C. Godet, N. Layadi, P. Roca i Cabarrocas, “Role of mobile hydrogen in the amorphous silicon recrystallization”, Applied Physics Letter , 66 (23), 5 , 1995..
    [29] T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura, S. Nitta, “Characterization and role of hydrogen in nc-Si:H”, Journal of Non-Crystalline Solids , 266-269 , 201-205 , 2000

    [30] C. Godet, N. Layadi, P. Roca i Cabarrocas, “Role of mobile hydrogen in the amorphous silicon recrystallization”, Applied Physics Letter 66 (23), 5, 1995.

    [31] P. Roca i Cabarrocas, “Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films”, Journal of Non-Crystalline Solids , 266-269 , 2000.

    [32] X. Deng, “High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells”, Annual Technical Progress Report, 2002 to August 31, 2003.

    [33] M. Krause, H. Stiebig, R.Carius, U. Zastrow, H. Bay, H. Wagner, “Structural and optoelectronic properties of microcrystalline silicon germanium”, Journal of Non-Crystalline Solids, 299-302 , 158-162, 2002.

    下載圖示 校內:2014-07-14公開
    校外:2014-07-14公開
    QR CODE