| 研究生: |
顏于華 Yen, Yu-hua |
|---|---|
| 論文名稱: |
玻璃基板上PECVD金屬誘發橫向結晶(MILC)成長低溫奈米複晶矽鍺薄膜電晶體之研究 PECVD MILC Nano SiGe TFT on Glass Substrate for Large Area Flat Panel Display Applications |
| 指導教授: |
方炎坤
Fang, Yean-kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 薄膜電晶體 、矽鍺 |
| 外文關鍵詞: | TFT, SiGe |
| 相關次數: | 點閱:123 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究利用PECVD及金屬橫向結晶(Metal Induced Lateral Crystallization)來低溫(400℃) 成長大面積平面顯示器用奈米矽鍺薄膜電晶體( nc-SiGe TFTs)。不但保有目前非晶矽薄膜技術的優點,而且可以提升其載子遷移率進而提升驅動電流,增加開關電流比。
吾人發展出不同誘發時間下分別在矽基板以及玻璃基板上製作奈米複晶矽鍺薄膜電晶體的最佳製程參數。並利用FE-SEM、AFM觀察薄膜的表面,HP-4145作為電性量測分析,量測TFT Transfer characteristic和I-V curve,以及使用Raman spectra、XRD等儀器分析薄膜的結晶品質。
利用雙重閘極介電層,使在矽基板上nc-SiGe TFTs的載子移動率從0.09 cm2/V-s上升至31.7 cm2/V-s,在玻璃基板上nc-SiGe TFTs也有2.5 cm2/V-s的載子移動率。這些載子移動率遠大於在矽基板上nc-Si TFTs 的18.58 cm2/V-s。
In this thesis, for the first time, we developed the nano silicon germanium thin film transistors (nc-SiGe TFTs) on glass substrate. The nc-SiGe thin films were formed with a novel method of metal induced lateral crystallization (MILC), which is an effective technology and commonly used for preparation low temperature poly silicon films. The nc-SiGe films have a higher mobility than that of amorphous silicon (a-Si) or amorphous silicon germanium (a-SiGe) films, and can be uniformly deposited at low temperature (400℃). The nc-SiGe films growing condition was optimized by tuning a-SiGe depositing temperature in an PECVD system and different MILC anneal time. Furthermore, we also investigated physical and electrical characteristics of the films by FE-SEM, AFM, I/V measurements, Raman spectrum and XRD.
Finally, we prepared the nc-SiGe TFTs with a SiO2/TiO2 stacked gate oxide structure by the optimized condition. The developed nc-SiGe TFT has a typical drift mobility 31.7 cm2/V-s and 2.5 cm2/V-s on Si and glass substrate, respectively. These values are better than that of 18.58 cm2/V-s for a reported nc-Si TFT prepared by HWCVD on Si substrate.
[1] 王文德,方炎坤, ”利用金作低溫金屬誘發橫向結晶(MILC)成長應用於光電元件的複晶矽鍺薄膜之研究”,國立成功大學電機工程學系碩士論文, 2001.
[2] P. Roca i Cabarrocas, S. Hamma, “Microcrystalline silicon growth on a-Si:H: effects of hydrogen”, Thin Solid Films , vol. 337, pp. 23-26 , 1999.
[3] T. H. Buyuklimanli, K. Pangal, J. C. Sturm, S. Wanger, “Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films”, Journal of Applied Physics, vol. 85, no. 3, 1999.
[4] J. I. Hanna, T. Ohuchi, M. Yamamoto, “Direct fabrication of SiGe crystallites on glass substrate: from nanocrystals to microcrystals”, Journal of Non-crystalline Solids, vol. 198-200 , pp. 879-882, 1996.
[5] 工研院IEK-IT IS計畫,工研院產業經濟與資訊服務中心, 2004.
[6] T. J. King and K. C. Saraswat, “Polycrystalline Sillicon-Germanium Thin Film Transistors”, IEEE Trans. Electron Devices, vol. 41, no. 9, pp. 1581-1591, 1994.
[7] 紀國鐘、鄭晃忠, ”液晶顯示器技術手冊”, 經濟部技術處發行, 台灣電子材料與元件協會出版.
[8] T. Aoyama, G.. Kawachi, N. Konishi, Y. Okajima and K. Miyata, “Crystallization of LPCVD Silicon Films by Low Temperature Annealing”, Journal of the Electrochemistry . Soc., vol. 136, no.4, pp. 1169-1173, 1989.
[9] S. M. Choe, J. A. Ahn and O. Kim, “Fabrication of Laser Annealed Poly-TFT by Foaming a SixGE1-x Thermal Barrier”, IEEE Electron Device Letters, Vol. 22, No. 3, 2001.
[10] S. W. Lee, Y. C. Jeon and S. K. Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Letter of Applied Physics, ., 66(13), 27, pp. 1671-1673, 1995.
[11] J. Young, K. H. Kim and C. Ok Kim, “Low temperature metal induced crystallization of amorphous silicon using a Ni solution”, Journal of Applied Physics, 82(11), pp. 5865-5867, 1997.
[12] H. Kanno, I. Tsunoda, A. Kenjo, T. Sadoh, S. Tamaguchi, M. Miyao, “Metal-induced solid-phase crystallization of amorphous SiGe film on insulator”, Solid State Devices and Materials, 2002.
[13] 范盛宏,方炎坤,“金誘發非晶矽橫向結晶層之研製及特性分析”,國立成功大學電機工程學系碩士論文, 1999.
[14] 林秉章,方炎坤, ”利用層疊氫原子化學回火及電漿輔助化學氣相沉積技術成長低溫奈米矽鍺薄膜之研究”,國立成功大學電機工程學系碩士論文, 2005.
[15] B. Mebarji, S. Sumiya, R. Yoshida, M. Ito and T. Tsukada, Materials Letters, 41, no. 16, 1999.
[16] D. Hong, “Process Development and Modeling of Thin-Film Transistors”, Master's Thesis, Oregon State University, 2005.
[17] J. Puigdollers, C. Voz, A. Orpella, I. Martin, D. Soler, M. Fonrodona, J. Bertomeu, J. Andreu, R. Alcubilla, “Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by hot-wire CVD,” Journal of Non-Crystalline Solids, vol. 299–302, pp. 400–404, 2002.
[18] K. Lee, M. Shur, T. A. Fjeldly, T. Ytterda, “Semiconductor device modeling for VLSI,”1 ed. New jersey:Prentice Hall, Inc., 1993.
[19] M. S. Shur, H. C. Slade, M. D. Jacunski, A. A. Owusu, T. Ytterdal, “SPICE models for amorphous silicon and polysilicon thin film transistors,” Journal of the Electrochemical Society, 144, pp. 2833-9, 1997.
[20] Dosev, D. Konstantinov, “Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition.” ,in PhD thesis. Barcelona: Universitat Politècnica de Catalunya (UPC).
[21] S. M. Han, J. H. Park, H. S. Shin, Y. H. Choi, M. K. Han,“High Performance Nanocrystalline-Si TFT Fabricated at 150℃ Using ICP-CVD”, IEEE, 2005.
[22] S. W. Lee, Y. C. Jeon and S. K. Joo ,“Pd induced lateral crystallization of amorphous Si thin films”, Letter of Applied Physics, vol. 66, no. 13, pp.1671-1673, 1995
[23] S. W. Lee, and S. K. Joo, T. H. Ihn, ,“Fabrication of high-mobility p-channel poly-Si thin film transistors by self-aligned metal-induced lateral vrystallization”, IEEE Trans. Electron Devices,, vol. 17, no. 8, pp. 407-409, 1996
[24] S. W. Lee, and S. K. Joo ,“Low temperature ploy-Si thin-film transistor fabrication by metal-induced lateral crystallizaion”, IEEE Trans. Electron Devices,, vol. 17, no. 4, pp. 160-162, 1996
[25] G.. A. Bhat, Z. Jin, H. S. Kwok, M. Wong,“Effects of longitudinal grain boundaries on the preformancd of MILC-TFT’s”, IEEE Trans. Electron Devices,, vol.20, no.2, pp97-99, 1999
[26] L. Hultman, A. Robertsson, and H.T.G.. Hertzell, “Crystallozation of amorphous silicon during thin-film gold reaction”, Journal of Applied Physics, , vol. 62 ,no. 9, pp. 3647-3655 , 1987
[27] P. Roca i Cabarrocas, “Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films”, Journal of Non-Crystalline Solids , 266-269 ,31-37 , 2000..
[28] C. Godet, N. Layadi, P. Roca i Cabarrocas, “Role of mobile hydrogen in the amorphous silicon recrystallization”, Applied Physics Letter , 66 (23), 5 , 1995..
[29] T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura, S. Nitta, “Characterization and role of hydrogen in nc-Si:H”, Journal of Non-Crystalline Solids , 266-269 , 201-205 , 2000
[30] C. Godet, N. Layadi, P. Roca i Cabarrocas, “Role of mobile hydrogen in the amorphous silicon recrystallization”, Applied Physics Letter 66 (23), 5, 1995.
[31] P. Roca i Cabarrocas, “Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films”, Journal of Non-Crystalline Solids , 266-269 , 2000.
[32] X. Deng, “High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells”, Annual Technical Progress Report, 2002 to August 31, 2003.
[33] M. Krause, H. Stiebig, R.Carius, U. Zastrow, H. Bay, H. Wagner, “Structural and optoelectronic properties of microcrystalline silicon germanium”, Journal of Non-Crystalline Solids, 299-302 , 158-162, 2002.