| 研究生: |
蔡修安 Tsai, Hsiu-An |
|---|---|
| 論文名稱: |
新型光訊號調變與細分割技術於精密量測之研究 Research on New Optical Signal Modulation and Subdivision Technique for Precision Measurements |
| 指導教授: |
羅裕龍
Lo, Yu-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 光訊號 、橢圓偏光 、光學材料 、調變 、細分割 、三角波 、多自由度 |
| 外文關鍵詞: | Modulation, Subdivision Technique, Precision Measurements, Ellipsometry, Triangular wave, Multi-degrees-of-freedom |
| 相關次數: | 點閱:124 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來有鑑於高科技產業脈動之急遽變化,加速驅動量測技術與訊號傳輸及處理技術快速發展,且伴隨著台灣半導體產業之蓬勃發展,高品質、多功能的精密、線上量測技術也相對的顯得相當重要。既有的多功能精密量測系統,在系統設計與訊號分析方法上相當複雜,也犧牲了與產線之整合性;本文以此為研究動機,針對可應用於光學材料量測之橢圓偏光儀,以及可應用在精密線性平台之光學尺,分別各發展出一套光訊號調變與細分割分析方法,以期未來可應用高科技之光電製程產線之線上精密量測。
本研究發展出僅透過雙相位訊號即可分析薄膜材料之橢偏參數(Δ, Ψ)與厚度之調變式橢圓偏光量測系統,並結合共路徑外差偏光量測技術,於實驗結果中,所分析之Ψ的平均標準差為 0.13度,Δ的平均標準差為0.94度,由Ψ和Δ計算出材料厚度的平均標準差為0.55 (nm),且可具有改變入射角度、即時測量、快速數據分析等優點。此外,亦提出可用於線性平台之多自由度精密量測系統,其中應用3D弦波線型光柵發展出訊號細分割分析方法,達到可量測精密線性平台之線性位移、垂直直線度與旋轉角度,於實驗中透過比對驗證後得知,量測得到最大誤差之線性位移、垂直直線度與旋轉角度,分別是0.239 μm、0.188 μm與 0.058度,且重複性誤差分別為±0.0215μm、±0.0295μm與±0.264度。未來希望透過本研究所發展出的方法與系統,未來期望與產業鏈結加速光電科技之發展。
In recent years, modern scientific techniques such as optical measurement, control, and automation have prospered. Furthermore, with the booming development of the semiconductor industry in Taiwan, high quality, and multi-functional precision control as well as on-line measurement techniques, have become relatively important. To get more high quality and multi-functional measurement, the system and signal analysis method are complicated. Thus, this study aims to develop novel signal modulation and subdivision technique analysis methods for modulated ellipsometer and multi-degree-of-freedom measurement. In the future, we expect the system proposed in this study to the application of on-line measures for the analysis of automatic processes as well as real-time monitoring.
At present, single-point measurement, multi-wavelength scanning, and rotating optical components are expected to acquire sample characteristic curves, which are then fitted to theoretical curves. However, the measurement steps take longer, either by spectral scanning or by continuously rotating optical components with a motor. In order to overcome these issues mentioned above, we proposed a heterodyne signals analysis method to obtain the full range of ellipsometric parameters and thickness of the single-layer isotropic thin film by use of two-phase detection precisely and straightforwardly. Also, by combining the common-path interference polarization techniques with this signal analysis method, the system can measure the ellipsometric parameters of amplitude ratio (Ψ) and phase difference (Δ) by phase detection. The experimental results show that the average standard variation of measured ellipsometric parameters (Ψ and Δ) and the thickness measurement of silica thin film deposited on silicon substrate are 0.13°, 0.94°, and 0.55 nm, respectively.
On the other hand, although measuring and specifying static/quasi-static straightness is a well-established process in existing performance standards, a standard test for characterizing dynamic straightness of single-axis linear positioning systems has not yet been developed. In order to solve this issue, we here present a novel triangular wave-based sequence signal analysis method with the advantages of simultaneously measuring linear displacements and vertical straightness errors of a linear moving air-bearing stage. An active level-triggered method was adopted for analyzing sequential triangular-wave signals to obtain a steady subdivision signal. The proposed system is similar to a linear encoder and can make online measurements of stage errors to analyze automatic processes and also be used for real-time monitoring. The performance of the proposed method and its reliability has been verified by experiments. The experiments show that the maximum error of measured rotation angle, linear displacement, and vertical straightness error is less than 0.058(degree), 0.239 μm, and 0.188 μm, respectively. The maximum repeatability error on the measurement of the rotation angle, linear displacement, and vertical straightness error is less than ±0.264(degree), ±0.0215μm, and ±0.0295 μm, respectively.
REFERENCE
[1] Aspnes, D. E. and Studna, A. A., “High precision scanning ellipsometer,” Appl. Opt. 14, 220-228 (1975).
[2] Hauge, P. S. and Dill, F. H., “A rotating-compensator Fourier ellipsometer,” Opt. Commun. 14, 431-43 (1975).
[3] Jasperson, S. N. and Schnatterly, S. E., “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum., 40, 761-767 (1969).
[4] Han, C. Y., Kuo, Z. W., Peng, Z. Y., and Jhou, J. Y., “Rapid dual-wavelength imaging ellipsometric system with stroboscopic illumination technique, ” 2016 International Conference on Applied System Innovation (ICASI), 1-4, (2016).
[5] Bammer, Y. and Huemer, F., “Inline thickness measurement with imaging ellipsometry,” Proc. SPIE 11144, 111440H1–111440H4, (2019).
[6] Slocum, A. H., Precision machine design, Society of Manufacturing Engineers (1992).
[7] Gao, W., Precision nanometrology: sensors and measuring systems for nanomanufacturing, Springer Science & Business Media (2010).
[8] Webster, J. G. . The Measurement, Instrumentation, and Sensors: Handbook, Spr. Sci. & Bus. Media (1999).
[9] Riemer, O., “Advances in the ultra-precision manufacturing,” Proc. Jpn. Soc. Precis. Eng., (2011).
[10] Lee, C., Kim, G. H., and Lee, S. K., “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage,” Meas. Sci. and Tech. 22(10), 1059011- 1059018 (2011).
[11] Lee, C. B., Kim, G. H., and Lee, S. K., “Uncertainty investigation of grating interferometry in six degree-of-freedom motion error measurements,” Int. J. of Pre. Eng. and Man.13(9), 1509-1515 (2012).
[12] Lee, C., & Lee, S.K., “Multi-degree-of-freedom motion error measurement in an ultraprecision machine using laser encoder,” J. of mec. sci. and tec. 27(1), 141-152 (2013).
[13] Park, S. R., Hoang, T. K., and Yang, S. H., “A new optical measurement system for determining the geometrical errors of rotary axis of a 5-axis miniaturized machine tool,” Journal of mechanical science and technology, Vol.24(1), 175-179 (2010).
[14] Drude, P., “Uber die Gesetze der Reflexion und Brechung des Lichtes an der Grenze absorbierender Kristalle,” Ann. Phys. 32, 584-625 (1887).
[15] Tronstad, L., “The investigation of thin surface films on metals by means of reflected polarized light,” Trans. Faraday Soc. 29, 502-514 (1933).
[16] Rothen, A., “The Ellipsometer, an Apparatus to Measure Thicknesses of Thin Surface Films,” Rev. Sci. Instrum. 16, 26-30 (1945).
[17] Collins, R. W., “Automatic rotating element ellipsometers Calibration, operation, and real-time applications,” Rev. Sci. Instrum. 61, 2029-2062 (1990).
[18] Little, S. A., Collins, R. W., and Marsillac S., “Analysis of interband, intraband, and plasmon polariton transitions in silver nanoparticle films via in situ real-time spectroscopic ellipsometry,” Appl. Phys. Lett. 98, 109101-109103 (2011).
[19] Little, S. A., Ranjan V., Collins, R. W., and Marsillac S., “Growth analysis of (Ag,Cu)InSe2 thin films via real time spectroscopic ellipsometry,” Appl. Phys. Lett. 101, 2319101-2319104 (2012).
[20] Azzam, R.M.A., “Polarization, thin-film optics, ellipsometry, and polarimetry: Retrospective,” J. of Vac. Sci. & Tech. B 37, 0608021–0608028, (2019).
[21] Lee, J., Rovira, P. I., An I., and Collins, R. W., “Rotating-compensator multichannel ellipsometry: applications for real time Stokes vector spectroscopy of thin film growth,” Rev. Sci. Instrum. 69, 1800–1810 (1998).
[22] Drevillon, B., Perrin, J., Marbot, R., Violet, A., and Dalby, J. L.,“ Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Rev. Sci. Instrum. 53, 969–977 (1982).
[23] Halagacka, L., Postava, K., Foldyna, M., and Pištora, J., “Precise phase-modulation generalized ellipsometry of anisotropic samples,” Phys. Stat. Sol. (a) 205, No. 4, 752–755 (2008)
[24] FitzGerald, W.R. and Hore, D.K., ” Photoelastic modulator-based broadband mid-infrared Stokes polarimeter,” J. of Modern Opt. 65(1), 75–84, (2018).
[25] Sinha, R. K., “A simple and inexpensive surface plasmon resonance setup for phase detection using rotating analyzer ellipsometric method,” Laser Phys. 30, 006021-006026 (2019).
[26] Drevillon, B, “In-situ spectroscopic ellipsometry studies of interfaces of thin films deposited by PECVD,” Thin Solid Films 241, 234–239 (1994).
[27] Tachibana, K., Shirafuji, T., and Muraishi, S., “Construction and performance of a Fourier-transform infared phase-modulated ellipsometer for in-process surface diagnostics,” Jpn. J. Appl. Phys. 35, 3652-3657 (1996).
[28] Hemmes, K., Hamstra, M. A., Koops, K. R., Wind M. M., T., Schram, T., J. de Laet, and Bender, H., “Evaluation of interferometric ellipsometer systems with a time resolution of one microsecond and faster,” Thin Solid Films 313-314, 40-46 (1998).
[29] Watkins, L. R. and Hoogerland, D. M., “Interferometric ellipsometer with wavelength modulation laser diode source,” Appl. Opt., Vol. 43, 4362–4366 (2004).
[30] Lin, C. H., Chou, C., and Chang, K. S., “Real time interferometric ellipsometry with optical heterodyne and phase lock-in techniques,” Appl. Opt. 29, 5159-5162 (1990).
[31] Schmitt, D. P., DeWalt, E. L., Dow, X. Y., and Simpson, G J., “Rapid Discrimination of Polymorphic Crystal Forms by Nonlinear Optical Stokes Ellipsometric Microscopy,” Ana. Chem. 88 (11), 5760-5768 (2016).
[32] Stiedl, J., Green, S., Chassé, T., and Rebner, K., “Characterization of Oxide Layers on Technical Copper Material Using Ultraviolet Visible (UV–Vis) Spectroscopy as a Rapid On-Line Analysis Tool,” Appl. Spectro. 73(1), 59–66 (2019).
[33] Gao, W., Dejima, S., Shimizu, Y., Kiyono, S., and Yoshikawa, H., “Precision measurement of two-axis positions and tilt motions using a surface encoder,” CIRP Annals 52(1), 435-438 (2003).
[34] 高清芬,光柵位移干涉術 , 國立交通大學光電工程研究所博士論文,2005
[35] Li, X., Gao, W., Muto, H., Shimizu, Y., Ito, S., and Dian, S., “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Pre. Eng. 37(3), 771-781 (2013).
[36] Matsukuma, H., Shimizu, Y., Masuya, F. , Ishizuka R., Li X., and Gao W., “Reduction in Cross‑Talk Errors in a Six‑Degree‑of‑Freedom Surface Encoder,” Nanomanufacturing and Metrology 2, 111-123 (2019).
[37] Fujiwara, H., Spectroscopic Ellipsometry – Principles and Applications, John Wiley & Sons Ltd, The Atrium (2007)
[38] Haus, H. A., Waves and fields in optoelectronics, Prientice-Hall, Inc., Englewood Cliffs, New Jersey, Ch. 12 (1984).
[39] Wickramasingle, H. K., Laser heterodyne probes, Optical Metrology, NATO ASI series (1987).
[40] Suzuki, T. and Hioki, R., “Translation of light frequency by moving grating,” J. Opt. Soc. Am. 57, 1551 (1967).
[41] Kothiyal, M. P. and Delisle, C., “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Opt. Lett. 9, 319-321 (1984).
[42] Suits, J. C., “Magneto-optical rotation and ellipticity measurements with a spinning analyzer,” Rev. Sci. Instrum. 42, 19-22 (1971).
[43] Takasaki, H., Umeda, N., and Tsukiji, M., “Stabilized transverse Zeeman laser as a new light source for optical measurement,” Appl. Opt. 19, 435-441 (1980).
[44] Gelmini, E., Minomi, U., and Docchio, F., “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement,” Opt. Lett. 19, 213-215 (1994).
[45] Kemp, J. C., “Piezo-optical birefringence modulators: new use for a long known effect,” J. Opt. Sci. Am., Vol. 59, 950-954 (1969).
[46] Gazalet, M. G., Ravez, M., Haine, F., Bruneel, C., and Bridoux, E., “Acousto-optic low frequency shifter,” Appl. Opt. 33, 1293-1298, (1994).
[47] Su, D.C., Chiu, M.H., and Chen, C.D., “Simple two-frequency laser,” Pre. Eng. 18(2-3), 161-163 (1996).
[48] Maldonado, T. A., “Electro-optic modulators,” Handbook of optics, 2, , Ch. 13, 13.11-13.35. (1995).
[49] 許正治,使用外差干涉儀測量光學常數之研究,國立交通大學光電工程研究所碩士論文,2003.
[50] 鄭諭燦,共路徑外差干涉儀順序量測雙折射晶體光學參數之設計與研究,國立成功大學機械工程研究所碩士論文,2005
[51] 池弘偉,全場式光學外差干涉儀應用於量測雙折射晶體光學參數之設計與研究,國立成功大學機械工程研究所碩士論文,2005
[52] Melin, L. G., “Moiré techniques for measurement of the deformation field at crack tips in fiber composite materials,” Luleå tekniska universitet, (1995).
[53] Zhao, H., Xu, J., Zhang, H., Liu, Z., and Dong, S., “Research on Subdivision System of Sin-Cos Encoder Based on Zero Phase Bandpass Filter,” Sensors 19(14), 3041-1 - 3041-14 (2019).
[54] Lo, Y. L., Lin, J. F., and Lee, S. Y ., “Polariscope for the simultaneous measurement of the principle and phase retardation using two phase-locked extractions,” App. Opt. 43, 6248-6254 (2004).
[55] Lo, Y. L., Lin, J. F., and Lee, S. Y ., “A compact circular heterodyne interferometer for simultaneous measurements of variation in the magnitude of phase retardation and principal axis angle,” Meas. Sci. Technol. 15, 978-982 (2004).
[56] Hecht, E., Optics, Addision-Wesley, 4th ed., Ch. 7, 282-286 (1998).
[57] Hecht, E., Optics, Addision-Wesley, 4th ed., Ch. 8, 336-344 (1998).
[58] Hazebroek H. F. and Visser W. M., “Automated laser interferometric ellipsometry and precision reflectometry,” J. Phy. E. 16, 654–661 (1983).
[59] Yu C. J., Lin C. E., Su L. C., and Chou C., “Heterodyne Linear Polarization Modulation Ellispometer,” Jpn. J Appl. Phys. 48, 0324031-0324034 (2009).
[60] Chen, B., Zhang, E., Yang, L., Li, C., Tang, W., and Feng, Q., “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80, 115113-1 – 115113-5, (2009).
[61] Jywe, W.Y., Liu, C.H.; Shien, W.H., Shyu, L.H., Fang, T.H., Sheu, Y.H, Hsu, T.H., and Hsieh, C.C. “Developed of a multi-degree of freedoms measuring system and an error compensation technique for machine tools,” J. Phys. Conf. Ser., 48, 761–765 (2006).
[62] Kimura, A., Gao, W., and Zeng, L.J., “Position and out-of-straightness measurement of a precision linear air-bearing stage by using a two-degree-of-freedom linear encoder,” Meas. Sci. Technol. 21, 054005-054014 (2010).
[63] Rahneberg I., Büchner H.J., and Jäger J., “Optical system for the simultaneous measurement of two-dimensional straightness errors and the roll angle,” Opt. Exp. 23, 9052–9073 (2015).
[64] Yang, P., Takamura, T., Takahashi, S., Takamasu, K., Sato, O., Osawa, S., and Takatsuji, T., “Development of high-precision micro-coordinate measuring machine: Multi-probe measurement system for measuring yaw and straightness motion error of XY linear stage,” Pre. Eng. 35, 424–430 (2011).
[65] Wang, C., Zhong, F., and Eills, J.D., “Two-dimensional straightness measurement based on optical knife-edge sensing,” Rev. of Sci. Inst. 88, 0951091-09510910, (2017).