簡易檢索 / 詳目顯示

研究生: 陳聖元
Chen, Sheng-Yuan
論文名稱: 二甲酚橙鈉鹽/二氧化鈦薄膜固態感測器於銅、鋅離子(Cu2+、Zn2+)的偵測與分子動態模擬研究銅、鋅離子和二甲酚橙離子的錯合結構
Xylenol Orange Tetrasodium Salt/TiO2 Films as Solid-state Sensor for Cu2+、Zn2+ and Coordination Structure of Cu2+、Zn2+ to the Anion Studied by Molecular Dynamics Simulation
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 95
中文關鍵詞: 非勻相比色感測器分子動態模擬
外文關鍵詞: heterogeneous, colorimetric sensors, molecular dynamics simulation
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇研究中,探討以xylenol orange(XO)做為Cu2+、Zn2+離子的感測分子。在XO水溶液系統中,因為XO分子在可見光區的吸收明顯受到酸鹼值的影響,所以我們以TiO2薄膜做為酸鹼緩衝的角色,避免感測金屬離子時受到酸鹼值的干擾。XO-TiO2薄膜偵測Cu2+離子與Zn2+離子時,分別在pH值為3~5.5與4~5的範圍下具有酸鹼緩衝及穩定的偵測能力。以XO-TiO2薄膜系統偵測不同Cu2+、Zn2+離子濃度對反射式可見光光譜ΔF(R)作圖可得到校正曲線,此校正曲線有相似性的趨勢,顯示XO-TiO2薄膜偵測金屬離子有固定的偵測機制。XO-TiO2薄膜偵測Cu2+、Zn2+離子時,肉眼可辨識顏色變化的極限濃度分別為2.5×10-5 M(1.59 ppm)及4×10-5 M(2.615 ppm),而光譜的偵測極限濃度則分別為7.5x10-6 M(0.476 ppm)及1x10-5 M(0.654 ppm)。
    最後以分子動態模擬方法探討水溶液系統中XO分子與Cu2+、Zn2+離子結合後可能的錯合結構。先根據模擬系統中Cu2+、Zn2+離子與XO分子的錯合結構進行分析,然後再以成對相關函數(pair correlation function)分析做比對,得到Cu2+、Zn2+離子主要與XO分子上的羧酸根及苯環上的磺酸根形成錯合結構。

    In this research,the role of xylenol orange(XO) employed as a sensor molecule for Cu2+, Zn2+ ions was investigated. In XO aqueous solution,the absorption of visible light was significantly affected by the pH value. Therefore,we use TiO2 films as a buffer to avoid pH effects interfering the metal ion sensing.XO-TiO2 films were used to detect Cu2+ ions in the pH range of 3-5.5 and Zn2+ ions in the pH range of 4-5 with good buffering action and stable detection capabilities. The calibration curve plot of different Cu2+,Zn2+ ion concentration sensed by the XO-TiO2 films to ΔF(R) with a similar trend.It indicating that XO-TiO2 films have fixed detection mechanism for sensing metal ions and could be judged by the color change of the films with naked eyes.The naked-eye detection limit of XO-TiO2 films for the Cu2+ ion was 2.5×10-5 M(1.59 ppm) and for Zn2+ ion was 4×10-5 M(2.615 ppm).The detection limit of spectrum for Cu2+ was 7.5x10-6 M(0.476 ppm) and for Zn2+ was 1x10-5 M(0.654 ppm).
    Molecular dynamics simulations were employed to study the coordinated structure of Cu2+, Zn2+ ions in the XO aqueous solution. According to the structure in the simulation system,we analyzed the complex structure of XO molecules binding to Cu2+, Zn2+ ions, and we used the method of pair correlation function to reconfirm. Based on the result, we found that the Cu2+, Zn2+ ions might coordinated with the carboxylate group and sulfonic acid group of the XO molecule.

    第一章 緒論.................................................1 第二章 感測器原理............................................5 2.1 感測器的介紹..........................................5 2.2 分子辨識原理..........................................8 2.3 染料發色原理.........................................11 2.4 基材的選擇...........................................16 第三章 實驗步驟及方法.......................................18 3.1 實驗藥品.............................................18 3.2 實驗儀器介紹.........................................19 3.3 實驗方法.............................................20 3.3.1 XO水溶液在不同pH值下的可見光吸收光譜變化...........20 3.3.2 加入Cu2+離子的XO水溶液可見光吸收光譜變化...........20 3.3.3 TiO2薄膜的製備-浸拉塗佈法........................22 3.3.4 XO-TiO2薄膜的製備...............................23 3.3.5 XO-TiO2薄膜偵測Cu2+、Zn2+金屬離子................23 3.3.6 XO-TiO2薄膜的酸鹼緩衝能力測試....................24 第四章 結果與討論...........................................26 4.1 XO水溶液在不同pH值環境下可見光吸收光譜的影響.............26 4.2 酸鹼緩衝能力測試......................................29 4.3 金屬離子對XO水溶液的影響..............................32 4.4 TiO2薄膜的品質.......................................38 4.5 含水量對TiO2薄膜上XO顯色的影響.........................40 4.6 XO在TiO2薄膜上的吸附量................................41 4.7 XO-TiO2薄膜對金屬離子的偵測能力........................42 第五章 水溶液中Cu2+、Zn2+與XO錯合物結構研究...................55 5.1 分子動態模擬原理簡介..................................55 5.2 模擬實驗流程說明及相關參數設定.........................61 5.3 結果與討論...........................................66 第六章 結論................................................88 附錄......................................................90 參考文獻...................................................91

    1.Moore, J. Inorganic contaminants of surface water, Springer-Verlag: New York, 1991.
    2.Carson, B.; Ellis, H.; McCann, J. Toxicology and biological monitoring of metals in humans, Lewis Publishers: Chelsea, MI, 1987.
    3.Fuller, C. W. Electrochemical Atomization for Atomic Absorption Spectroscopy, Royal Society of Chemistry: London, 1977, p65-83.
    4.Fassel, V. A. Science 1978, 202, 183.
    5.Zen, J. M.; Wang, H. F.; Kumar, A. S.; Yang, H.; Dharuman, Electroanalysis 2002, 14, 99.
    6.Mashhadizadeh, M. H.; Sheikhshoaie, I. Talanta 2003, 60, 73-80.
    7.Sancenón, F.; Martínez-Máñez, R.; Soto, J. Chem. Commun. 2001, 2262-2263.
    8.Basheer, M. C.; Alex, S.; Thomas, K. G.; Suresh, C. H.; Das, S. Tetrahedron 2006, 62, 605-610.
    9.Palomares, E.; Vilar, R.; Green, A.; Durrant, J. R. Adv. Funct. Mater. 2004, 14, 111-115.
    10.Coronado, E.; Galan-Mascaros, J. R.; Marti-Gastaldo, C.; Palomares, E.; Durrant, J. R.; Vilar, R.; Gratzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2005, 127, 12351-12356.
    11.Lee,S. J.; Lee, S. S.; Lee, J. Y.; Jung, J. H. Chem. Mater. 2006, 18, 4713.
    12.Lee,S. J.; Lee, S. S.; Lah, M. S.; Jung, J. H. Chem. Commun. 2006, 4539.
    13.Lee, S. J.; Bae, D. R.; Han, W. S.; Lee S. S.; Jung, J. H. Eur. J. Inorg. Chem. 2008, 1559.
    14.Melde, B. J.; Johnson, B. J.; Charles, P. T. Sensors 2008, 8, 5202.
    15.Miyaji, H.; Sessler, J. L. Angew. Chem. Int. Ed. 2001, 40, 154.
    16.Philip, A. G. Coord. Chem. Rev. 2003, 240, 191.
    17.Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, John Wiley & Sons, New York ,2000.
    18.Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni,Coordination Chemistry Reviews 2000, 205, 59-83.
    19.Han, W. S.; Lee, H. Y.; Jung, S. H.; Lee, S. J.; Jung, J. H. Chem. Soc. Rev. 2009, 38, 41904.
    20.Obare, S. O.; Hollowell, R. E.; Murphy, C. J. Langmuir 2002, 18, 10407.
    21.Balaji, T.; El-Safty, S. A.; Matsunaga, H.; Hanaoka, T.; Mizukami, F. Angew. Chem., Int. Ed. 2006, 45, 7202.
    22.Palomares, E.; Marti'nez-Di'az, M. V.; Torres, T.; Coronado, E. Adv. Funct. Mater. 2005, 15, 803.
    23.Metivier, R.; Leray, I.; Lebeau, B.; Valeur, B. J. Mater. Chem. 2005, 15, 2965.
    24.Boiocchi, M.; Bonizzoni, M.; Fabbrizzi, L.; Piovani G.; Taglietti, A. Angew. Chem., Int. Ed. 2004, 43, 3847.
    25.Lee, M. H.; Lee, S. J.; Jung, J. H.; Kim, J. S. Tetrahedron 2007, 63, 12087.
    26.Lee, S. J.; Jung, J. H.; Seo, J.; Yoon, I.; Park, K.-M.; Lindoy, L. F.; Lee, S. S. Org. Lett. 2006, 8, 1641.
    27.Descalzo, A. B.; Jimenz, D.; Haskouri, J. E.; Beltran, D.; Amoros, P.; Marcos, M. D.; Martínez-Máñez, R.; Soto, J. Chem. Commun. 2002, 562.
    28.Fischer, E. Ber. Dt. Chem. Ges. 1894, 27, 2985-2993.
    29.Koshland, D. E. Proc. Natl. Acad. Sci. 1958, 44, 98-104.
    30.Zollinger, H. Color Chemistry: Syntheses, Properties and Applications of Organic Dyes and Pigments, 2nd revised edition; VCH: New York, 1991.
    31.Peter, A. T.; Freeman, H. S. Modern Colorants: Synthesis and Structure, Advances in Color Chemistry Series 3, AT Peters & HS Freeman, Blackie A&P, London, 1995.
    32.Gholivand, M. B.; Bamdad, F.; Ghasemi, J. Talanta 1998, 46, 875-884.
    33.Kresge, C. T.; Leonowicz, M. E.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
    34.Scott, B. J.; Wirnsberger, G.; Stucky, G. D. Chem. Mater. 2001, 13, 3140-3150.
    35.Matsubara, T.; Ichikawa, Y.; Aramaki, K.; Katagiri, A. Solar Energy Materials & Solar Cells, 2005, 85, 269-275.
    36.O'Regan, B.; Gratzel, M. Nature, 1991, 353, 737-740.
    37.Tachibanaa,Y.; Nazeeruddinb, M. K.; Gratzelb, M.; Kluga, D. R.; Durranta, J. R. Chemical Physics 2002, 285, 127-132.
    38.Kim, E.; Seo, S.; Seo, M. L.; Jung, J. H. Analyst 2010, 135, 149-156.
    39.Li, X.; Pérez-Hernández, J.; Haque, S. A.; Durrant, J. R.; Palomares, E. J. Mater. Chem. 2007, 17, 2028.
    40.Job, P. Ann. Chim.1928, 9, 113-203.
    41.Gay, C.; Collins, J.; Gebicki, J. M. Anal. Biochem. 1999, 273, 143-148.
    42.楊岱霖,碩士論文,二甲酚橙鈉鹽/二氧化鈦薄膜固態感測器用於鈷離子(Co2+)的定量分析與以分子動態模擬研究Zn2+和二甲酚橙離子的錯合結構,國立成功大學,民國96年.
    43.Solovei, O. I.; Vrublevs'ka, T. Y. Material Science 2004, 40, 148-152.
    44.Solovey-Vandersteen, O.; Vrublevska, T.; Lang, H. Acta Chim. Slov. 2004, 51, 95-106.
    45.Sun, H. J. Phys. Chem. 1998, B102, 7338.
    46.Hansen, J.-P.; McDonald, I. R. Theory of Simple Liquids, 3rd Edition, Boston, 2006.
    47.Ewald, P. P. Ann. Phys., 1921, 253.
    48.H. Mizuguchi, T. Yotsuyanagi, Anal. Sci., 2001, 1687-1689.

    下載圖示 校內:2015-07-28公開
    校外:2015-07-28公開
    QR CODE