簡易檢索 / 詳目顯示

研究生: 鄭淇元
Zheng, Chi-Yuan
論文名稱: 以電紡絲法製備含石墨烯亂排聚苯乙烯及對排聚苯乙烯纖維
Preparation of aPS filled with graphene and sPS filled with graphene fibers via coaxial electrospinning
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 99
中文關鍵詞: 聚苯乙烯電紡纖維石墨烯
外文關鍵詞: polystyrene, electrospun fibers, graphene
相關次數: 點閱:73下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分成兩個部分,首先以自行設計架設有hot stage的FT-IR,來測試經逐步升溫後的aPS、sPS和iPS三種聚苯乙烯的順向纖維膜,其分子鏈orientation的變化,進而探討在結晶前,分子鏈是否發生了relaxation現象。實驗發現經逐步升溫回火FT-IR實驗後,iPS和aPS順向纖維dichroic ratio(D)在結晶前會明顯下降,代表iPS纖維在結晶前具有明顯的relaxation現象發生,而sPS順向纖維膜D在結晶前沒有明顯改變,代表sPS纖維膜在結晶前沒有明顯的relaxation現象發生。
    將aPS與厚度約為3.5 nm石墨烯(graphene)的混摻溶液經電紡製備成含有不同graphene含量的aPS/graphene奈米複合纖維,直徑約100-400 nm。由Raman圖譜可知,本實驗所使用的graphene粉末G band強度明顯高於D band,代表此graphene的sp2結構較sp3結構多。由SEM和TEM影像可知,aPS纖維表面有些不規則突起的地方,推測可能是因為aPS纖維太細所以無法有效的包覆graphene。隨著aPS溶液graphene含量上升,在溶液性質方面,溶液導電度和溶液黏度也會上升,由CCD影像可知,cone height會上升而液柱長度會下降,將SEM影像配合imageJ軟體計算,可得纖維直徑會變得更細。導電度測試結果顯示aPS/graphene複合纖維膜之導電percolation threshold為0.39 vol%,可知aPS/graphene複合纖維膜石墨烯含量在0.39 vol%以上,就能形成導電網路。
    本實驗希望利用已達entanglement的aPS溶液包覆未達entanglement的sPS溶液進行電紡,最後利用溶劑萃取將aPS帶走的方式得到sPS均勻纖維,但受限於目前所使用的實驗手法依舊無法克服連續製程中斷的問題,所以本實驗還未能獲得含graphene之sPS電紡複合纖維膜。

    In the first part, we will discuss the relaxation behavior of aPS、sPS and iPS aligned fibers before crystallization by polarized FT-IR with hot-stage. The chain orientation in the as-spun fibers was characterized by the dichroic ratio (D) obtained from the polarized FT-IR spectra. After the stepwise heating process, the calculated D for aPS and iPS before crystallization decreased obviously, that is, iPS took place relaxation obviously before crystallization and sPS almost unchanged, that is, sPS almost did not take place relaxation before crystallization. In the second part, in order to prepare aPS/graphene conductive fiber membranes network, we elecrtospun aPS/graphene blend solution to obtain. During the experiments, we used Raman spectra、viscometer、conductivity meter, etc. instruments to analyze conductive fiber membranes properties. For the results and conclusions, first, graphene powders have more sp2 structure. Second, graphene size was larger than fiber diameter, graphene was included in aPS fibers but protuberated. Third, as graphene concentration rises, conductivity (k)、viscosity (ho) of solution and cone height (Hc) rises but jet length (Lj) and fiber diameter (df) decreases. Forth, the percolation threshold of aPS/graphene fibers is 0.39 vol%, that is, graphene contents increase to 0.39 vol% forming a conductivity network. In the third part, because we did not overcome continuous process of electrospun sPS, we did not obtain the sPS/graphene composite fibers at present.

    摘要.......................................................i Extended Abstract...........................................ii 致謝.....................................................ix 目錄.................................................xii 表目錄....................................................xiv 圖目錄............................................xv 符號...............................................xix 一、前言........................................1 二、簡介...................................................2 2.1電紡絲模式...............................2 2.2電紡絲實驗觀察..................................3 2.2.1 cone和jet形態.........................3 2.2.2纖維形態..............................3 三、文獻回顧.........................................5 3.1聚苯乙烯(polystyrene,PS)............................ 5 3.1.1 sPS的簡介...............................5 3.1.2 iPS的簡介................................6 3.2石墨烯(graphene)特性................................7 3.3 In-situ FT-IR介紹..................................8 3.4芯鞘型電紡絲................................9 3.5鬆弛現象(relaxation).........................10 3.6順向度分析..................................11 四、實驗.........................................21 4.1實驗藥品.................................21 4.2電紡絲儀器及材料.............................21 4.3分析儀器....................................23 4.4樣品製備.......................................24 4.4.1電紡絲溶液配製.................................24 4.4.2電紡絲實驗......................................26 4.5實驗步驟...................................26 4.5.1偏光顯微鏡(POM)................................26 4.5.2掃描式電子顯微鏡(SEM).......................27 4.5.3傅立葉轉換紅外線光譜儀(FT-IR).......................27 4.5.4 Raman光譜分析...................................28 4.5.5溶液黏度實驗...................................28 4.5.6測量電紡液導電度.................................28 4.5.7穿透式電子顯微鏡(TEM)............................29 4.5.8導電度計.....................................29 4.6電紡絲之實驗流程圖....................................31 五、結果與討論............................................35 5.1溶液配製......................................35 5.2製備不同立體結構聚苯乙烯順向纖維膜.....................35 5.3以polarized FT-IR分析結晶前順向纖維膜relaxation現象....36 5.4 aPS/graphene電紡纖維製備............................40 5.4.1以Raman光譜探討graphene的結構與性質......................40 5.4.2溶液性質分析.....................................40 5.4.3 graphene含量對電紡製程的影響.........................41 5.4.4 aPS/graphene電紡複合纖維膜之導電行為研究..........43 5.5 sPS/graphene電紡纖維製備..........................45 六、結論.........................................81 七、參考文獻........................................83 八、附錄..........................................88

    [1] N. Ishihara, T. Seimiya, M. Kuramoto, M. Uoi, “Crystalline Syndiotactic Polystyrene”, Macromolecules 19, 2464 (1986)
    [2] G. Guerra, V. M. Vitagliano, C. D. Rosa, V. Petraccone, P. Corradini, “Polymorphism in melt crystallized syndiotactic polystyrene samples”, Macromolecules 23, 1539 (1990)
    [3] A. M. Evans, E. J. C. Kellar, J. Knowles, C. Galiotis, C. J. Carriere, E. H. Andrews, “The structure and morphology of syndiotactic polystyrene injection molded coupons”, Polymer Engineering and Science 37, 153 (1997)
    [4] O. Gries, Y. Xu, T. Asano, J. Petermann, “Morphology and structure of syndiotactic polystyrene”, Polymer 30, 590 (1989).
    [5] C. De Rosa, G. Guerra, V. Petraccone, P. Corradini, “Crystal structure of the α-form of syndiotactic polystyrene”, Polymer Journal 23, 1435 (1991).
    [6] Y. Chatani, Y. Fujii, Y. Shimane, T. Ijitsu, Polymer Preprint Japan (English Edition) 37, E428 (1988).
    [7] F. Auriemma, V. Petraccone, F. D. Poggetto, C. D. Rosa, G. Guerra, C. Manfredi, P. Corradini, “Mesomorphic form of syndiotactic polystyrene as composed of small imperfect crystals of the hexagonal (alpha) crystalline form”, Macromolecules 26, 3772 (1993)
    [8] E. J.C. Kellar, C. Galiotis, E.H. Andrews, “Raman vibrational studies of syndiotactic polystyrene .1. Assignments in a conformational/crystallinity sensitive spectral region”, Macromolecules 29, 3515 (1996)
    [9] H. D. Wu, I. D. Wu, F. C. Chang, “Characterization of crystallization in syndiotactic polystyrene thin film samples”, Macromolecules 33, 8915 (2000)
    [10] T. Kimura, H. Ezure, S. Tanaka, E. Ito, “In situ FTIR spectroscopic study on crystallization process of isotactic polystyrene”, Journal of Polymer Science Part B: Polymer Physics 36, 1227 (1998)
    [11] J. M. Zhang, Y. X. Duan, D. Shen, S. Yan, I. Noda, Y. Ozaki, “Structure changes during the induction period of cold crystallization of isotactic polystyrene investigated by infrared and two-dimensional infrared correlation spectroscopy”, Macromolecules 37, 3292 (2004)
    [12] P. J. Lemstra, J. Postma, G. Challa, “Molecular-weight dependence of spherulitic growth-rate of isotactic polystyrene”, Polymer 15, 757 (1974)
    [13] Y. X. Duan, J. M. Zhang, D. Shen, S. Yan, “In situ FTIR studies on the cold-crystallization process and multiple melting behavior of isotactic polystyrene”, Macromolecules 36, 4874 (2003)
    [14] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science 306, 666 (2004).
    [15] J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites” Carbon 47, 922 (2009).
    [16] H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, “Graphene oxide doped polyaniline for supercapacitors” Electrochemistry Communications 11, 1158 (2009).
    [17] J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, “Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance” Carbon 48, 487 (2010).
    [18] S. D. McCullen, D. R. Stevens, W. A. Roberts, S. S. Ojha, L. I. Clarke, R. E. Gorga, “Morphological, electrical, and mechanical characterization of electrospun nanofiber mats containing multiwalled carbon nanotubes” Macromolecules 40, 997 (2007).
    [19] J. Xu, B. H. Guo, R. Yang, Q. Wu, G. Q. Chen, Z. M. Zhang, “In situ FTIR study on melting and crystallization of polyhydroxyalkanoates”, Polymer 43, 6893 (2002)
    [20] R. Androsch, I. Kolesov, H. J. Radusch, “Temperature-resolved derivative FTIR - Melting and formation of mesomorphic poly(ethylene)”, Journal of Thermal Analysis and Calorimetry 73, 59 (2003)
    [21] J. Y. Yu, S. Asai, M. Sumita, “Time-resolved FTIR study of crystallization behavior of melt-crystallized poly(phenylene sulfide)”, Journal of Macromolecular Science-Physics B39, 279 (2000)
    [22] Y. Zhang, J.M. Zhang, Y. L. Lu, Y. X. Duan, S. Yan, D. Shen, “Glass transition temperature determination of poly(ethylene terephthalate) thin films using reflection-absorption FTIR”, Macromolecules 37, 2532 (2004)
    [23] F. Kimura, T. Kimura, A. Sugisaki, M. Komatsu, H. Sata, E. Ito, “FTIR spectroscopic study on crystallization process of poly(ethylene-2,6-naphthalate)”, Journal of Polymer Science Part B: Polymer Physics 35, 2741 (1997)
    [24] E. B. Gowd, K. Tashiro, C. Ramesh, “Structural phase transitions of syndiotactic polystyrene”, Progress in Polymer Science 34, 280 (2009)
    [25] K. Tashiro, A. Yoshioka, “Molecular mechanism of solvent-induced crystallization of syndiotactic polystyrene glass. 2. Detection of enhanced motion of the amorphous chains in the induction period of crystallization”, Macromolecules 35, 410 (2002)
    [26] S.-C. Wu, F.-C. Chang, “The crystallization characterization of bulk syndiotactic polystyrene sample: Immediate evidence from IR spectroscopy”, Polymer 45, 733 (2004)
    [27] C. Wang, C. L. Huang, Y. C. Chen, G. L. Hwang, S. J. Tsai, “Carbon nanocapsules-reinforced syndiotactic polystyrene nanocomposites: Crystallization and morphological features”, Polymer 49, 5564 (2008)
    [28] G. C. Rutledge, J.H. Yu, S. V. Fridrikh, “Production of Submicrometer Diameter Fibers by Two-Fluid Electrospinning”, Advanced Materials 16, 1562 (2004)
    [29] M. Wang, J. H. Yu, D. L. Kaplan, G. C. Rutledge, “Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning.”, Macromolecules 39, 1102 (2006)
    [30] D. Li, Y. N. Xia, “Direct fabrication of composite and ceramic hollow nanofibers by electrospinning”, Nano Letters 4, 933 (2004)
    [31] X. Q. Li, Y. Su, R. Chen, C. L. He, H. S. Wang, X. M. Mo, “Fabrication and Properties of Core-Shell Structure P(LLA-CL) Nanofibers by Coaxial Electrospinning”, Journal of Applied Polymer Science 111, 1564 (2009)
    [32] C. W. Frank, V. Rao, M. M. Despotopoulou, R. F. W. Pease, W. D. Hinsberg, R. D. Miller, J. F. Rabolt, “Structure in Thin and Ultrathin Spin-Cast Polymer Films”, Science 273, 912 (1996)
    [33] A. Ziabicki, K. Kedzierska, “Studies on the orientation phenomena by fiber formation from polymer melts.part I.Preliminary investigations on polycapronamide.”, Journal of Applied Polymer Science 273, 912 (1996)
    [34] X. Lu, E. M. Arruda, W. W. Schultz, “The effect of processing parameters on glass fiber birefringence development and relaxation”, Journal of Non-Newtonian Fluid Mechanics 86, 89 (1999)
    [35] S. R. Samanta, W. W. Lanier, R. W. Miller, M. E. Gibson JR, “Fiber structure study by polarized infrared attenuated total reflection spectroscopy”, Applied Spectroscopy 44, 286 (1990)
    [36] 羅鈞聿, “以動態傅立葉轉換紅外線光譜儀探討對位聚苯乙烯摻合物結晶行為之研究”, 國立成功大學碩士論文 (2009)
    [37] 李明峰, “以電紡絲法製備聚對苯二甲酸乙二酯/石墨烯纖維及其微結構鑑定”, 國立成功大學碩士論文 (2011)
    [38] B. Jasse, R. S. Chao, J. L. Koenig, “Laser Raman scattering in uniaxially oriented atactic polystyrene”, Journal of Polymer Science Part B: Polymer Physics 16, 2157 (1978)
    [39] J. E. K. Schawe, “Description of thermal relaxation of polystyrene close to the thermal glass transition”, Journal of Polymer Science Part B: Polymer Physics 36, 2165 (1998)
    [40] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, “Graphene-based composite materials”, Nature 442, 282 (2006)
    [41] I. Balberg, “Tunneling and nonuniversal conductivity in composites materials”, Physical Review Letters 59, 1305 (1987)

    下載圖示 校內:2019-08-28公開
    校外:2019-08-28公開
    QR CODE