| 研究生: |
林湘芸 Lin, Shiang-Yun |
|---|---|
| 論文名稱: |
藍綠菌代謝物質和化學信號分子對於微囊藻生長與產毒的影響 The impact of cyanobacteria metabolites and chemical signaling molecules on the cell growth and toxin production of Microcystis aeruginosa |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | N 酰基高絲氨酸內酯 (AHLs) 、藍綠菌(Cyanobacteria) 、微囊藻毒(Microcystin) 、微囊藻(Microcystis) 、群體感應(Quorum sensing) 、訊號分子(Signal chemicals) |
| 外文關鍵詞: | Quorum sensing, Cyanobacteria, Microcystis, Microcystin, N-acyl-homoserine lactones(AHLs), Signal chemicals |
| 相關次數: | 點閱:51 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
群體感應(Quorum sensing)是細菌間透過訊號分子(Signal chemicals)的溝通作用,以促進或抑制細胞的生理活動的重要現象,然而在藍綠菌方面的研究較少。微囊藻為台灣常見且有害的藍綠菌,其產生的微囊藻毒具有肝毒性,若微囊藻細胞遭到破壞或環境壓力增加皆有可能促進微囊藻產毒,因此了解群體感應與其化學訊號分子對微囊藻的影響有其必要性。
本研究在微囊藻系統中添加培養六種(束絲藻(Aph.)、柱孢藻(Cyl.)、擬魚腥藻(Psu.)、魚腥藻(Dol.)、小球藻(Chl.)和微囊藻(Mic.))藻類後的背景液,進行微囊藻培養,實驗結果發現,添加六種藻類的背景液皆可以促進微囊藻細胞增殖,並以微囊藻(Mic.)背景液的促進效果為最佳,添加微囊藻(Mic.)柱孢藻(Cyl.)、小球藻(Chl.)和魚腥藻(Dol.)的背景液,皆可縮短微囊藻細胞的遲滯期。增加微囊藻(Mic.)背景液的比例可增加50%微囊藻的產毒速率,增加束絲藻(Aph.)、柱孢藻(Cyl.)、擬魚腥藻(Psu.)、和小球藻(Chl.)的背景液比例皆可促進對數生長期間的微囊藻毒素之合成。
添加兩種化學訊號分子N 酰基高絲氨酸內酯(N-acyl-homoserine lactones, AHLs)至微囊藻系統的實驗顯示,添加10 μg/L至250 μg/L C6-HSL,僅在250 μg/L有抑制微囊藻生長的現象,且在微量微囊藻背景基質的存在下,其抑制的情形更加明顯。添加10 μg/L至100 μg/L 3-oxo-C8-HSL可促進微囊藻細胞生長,並以添加50 μg/L為最佳;但在添加150 μg/L與250 μg/L時則轉為抑制生長作用,且在背景液存在下促進與抑制的情形更加明顯。兩種AHLs在低濃度(10 μg/L至100 μg/L之間)時,不會影響微囊藻的產毒能力,而較高濃度(150 與250 μg/L),則在對數生長期有促進微囊藻產毒能力的現象,且促進效果具有濃度依賴性。此結果可提供後續研究或開發新水源管理方法的參考。
研究中並發現微囊藻背景液、C6-HSL與3-oxo-C8-HSL,可能會影響微囊藻及束絲華藻生長初期藻藍蛋白合成,但仍需更多的實驗佐證。研究中亦嘗試建立藻類中C6-HSL、C7-HSL、3-oxo-C8-HSL與C12-HSL的分析方法,但萃取條件與流程需要近一步改善。
Quorum sensing is a crucial mechanism by which bacteria regulate cellular physiological activities via signal molecules. However, research on quorum sensing in cyanobacteria remains relatively limited. Microcystis, a common and harmful cyanobacteria in Taiwan and the world, produces the hepatotoxin microcystin. This study investigates the effects of quorum sensing and chemical signal molecules on Microcystis.
This study found that the supernatants from different algae can promote Microcystis cell growth and toxin production, with the supernatant from Microcystis itself showing the most significant effect on cell growth. Additionally, increasing the proportion of supernatants from Aphanizomenon, Cylindrospermopsis, Dolichospermum, and Chlorella resulted in enhanced microcystin synthesis during the logarithmic growth phase.
Furthermore, two types of chemical signal molecules, C6-HSL and 3-oxo-C8-HSL, exhibited varying impacts on Microcystis cell growth and toxin production at different concentrations. Specifically, 3-oxo-C8-HSL demonstrated a more pronounced growth-promoting effect, while both AHLs enhanced toxin synthesis at higher concentrations but also exhibited inhibitory effects on growth. The study also found that the supernatants and AHLs phycocyanin synthesis, although further experiments are needed to confirm these findings. Additionally, the study attempted to establish extraction and analysis methods for AHLs in cyanobacteria, but further optimization of extraction conditions and procedures is required.
Bachofen, R., & Schenk, A. (1998). Quorum sensing autoinducers: do they play a role in natural microbial habitats? Microbiological research, 153(1), 61-63.
Bakaraki, N., Chormey, D. S., Bakirdere, S., & Engin, G. O. (2016). Development of a sensitive liquid–liquid extraction method for the determination of N-butyryl-l-homoserine lactone produced in a submerged membrane bioreactor by gas chromatography mass spectrometry and deuterated anthracene as the internal standard. Analytical Methods, 8(12), 2660-2665.
Bassler, B. L., Greenberg, E. P., & Stevens, A. M. (1997). Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. Journal of bacteriology, 179(12), 4043-4045.
Bassler, B. L., Wright, M., Showalter, R. E., & Silverman, M. R. (1993). Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Molecular microbiology, 9(4), 773-786.
Bell, T. A., Sen-Kilic, E., Felföldi, T., Vasas, G., Fields, M. W., & Peyton, B. M. (2018). Microbial community changes during a toxic cyanobacterial bloom in an alkaline Hungarian lake. Antonie Van Leeuwenhoek, 111, 2425-2440.
Bell, W., & Mitchell, R. (1972). Chemotactic and growth responses of marine bacteria to algal extracellular products. The Biological Bulletin, 143(2), 265-277.
Bernard, C., Ballot, A., Thomazeau, S., Maloufi, S., Furey, A., Mankiewicz‐Boczek, J., Pawlik‐Skowrońska, B., Capelli, C., & Salmaso, N. (2016). Appendix 2: Cyanobacteria associated with the production of cyanotoxins. Handbook of cyanobacterial monitoring and cyanotoxin analysis, 501-525.
Cao, H., Krishnan, G., Goumnerov, B., Tsongalis, J., Tompkins, R., & Rahme, L. G. (2001). A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proceedings of the National Academy of Sciences, 98(25), 14613-14618.
Cataldi, T. R., Bianco, G., & Abate, S. (2009). Accurate mass analysis of N‐acyl‐homoserine‐lactones and cognate lactone‐opened compounds in bacterial isolates of Pseudomonas aeruginosa PAO1 by LC‐ESI‐LTQ‐FTICR‐MS. Journal of mass spectrometry, 44(2), 182-192.
Chong, G., Kimyon, O., Rice, S. A., Kjelleberg, S., & Manefield, M. (2012). The presence and role of bacterial quorum sensing in activated sludge. Microbial biotechnology, 5(5), 621-633.
Chugani, S., & Greenberg, E. P. (2010). LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 107(23), 10673-10678.
Churchill, M. E., & Chen, L. (2011). Structural basis of acyl-homoserine lactone-dependent signaling. Chemical reviews, 111(1), 68-85.
De Clippeleir, H., Defoirdt, T., Vanhaecke, L., Vlaeminck, S. E., Carballa, M., Verstraete, W., & Boon, N. (2011). Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm. Applied microbiology and biotechnology, 90, 1511-1519.
Decho, A. W., Frey, R. L., & Ferry, J. L. (2011). Chemical challenges to bacterial AHL signaling in the environment. Chemical reviews, 111(1), 86-99.
Delalande, L., Faure, D., Raffoux, A., Uroz, S., D'Angelo-Picard, C., Elasri, M., Carlier, A., Berruyer, R., Petit, A., & Williams, P. (2005). N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS microbiology ecology, 52(1), 13-20.
Elliott, J. A. (2010). The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biology, 16(2), 864-876.
Engebrecht, J., & Silverman, M. (1984). Identification of genes and gene products necessary for bacterial bioluminescence. Proceedings of the National Academy of Sciences, 81(13), 4154-4158.
Farrand, S. K., Qin, Y., & Oger, P. (2002). Quorum-sensing system of Agrobacterium plasmids: Analysis and utility. In Methods in Enzymology (Vol. 358, pp. 452-484). Academic Press.
Fukami, K., Nishijima, T., & Ishida, Y. (1997). Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia, 358, 185-191.
Galloway, W. R., Hodgkinson, J. T., Bowden, S. D., Welch, M., & Spring, D. R. (2011). Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chemical reviews, 111(1), 28-67.
Girard, L., Blanchet, É., Intertaglia, L., Baudart, J., Stien, D., Suzuki, M., Lebaron, P., & Lami, R. (2017). Characterization of N-acyl homoserine lactones in Vibrio tasmaniensis LGP32 by a biosensor-based UHPLC-HRMS/MS method. Sensors, 17(4), 906.
Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G., Wilhelm, S. W., Wood, S. A., & Paerl, H. W. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful algae, 54, 4-20.
Hu, H., He, J., Liu, J., Yu, H., & Zhang, J. (2016). Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors. Bioresource Technology, 211, 339-347.
Huang, J., Shi, Y., Zeng, G., Gu, Y., Chen, G., Shi, L., Hu, Y., Tang, B., & Zhou, J. (2016). Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. Chemosphere, 157, 137-151.
Huang, S., Zhang, H., Albert Ng, T. C., Xu, B., Shi, X., & Ng, H. Y. (2020). Analysis of N-Acy-L-homoserine lactones (AHLs) in wastewater treatment systems using SPE-LLE with LC-MS/MS. Water Research, 177, 115756.
Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471-483.
Huisman, J., Sharples, J., Stroom, J. M., Visser, P. M., Kardinaal, W. E. A., Verspagen, J. M., & Sommeijer, B. (2004). Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology, 85(11), 2960-2970.
Kaplan, H. B., & Greenberg, E. (1985). Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. Journal of bacteriology, 163(3), 1210-1214.
Kim, B.-H., Ramanan, R., Cho, D.-H., Oh, H.-M., & Kim, H.-S. (2014). Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass and Bioenergy, 69, 95-105.
Kim, S.-R., Lee, K.-B., Kim, J.-E., Won, Y.-J., Yeon, K.-M., Lee, C.-H., & Lim, D.-J. (2015). Macroencapsulation of quorum quenching bacteria by polymeric membrane layer and its application to MBR for biofouling control. Journal of Membrane Science, 473, 109-117.
Kumari, A., Pasini, P., Deo, S. K., Flomenhoft, D., Shashidhar, H., & Daunert, S. (2006). Biosensing systems for the detection of bacterial quorum signaling molecules. Analytical chemistry, 78(22), 7603-7609.
Lürling, M., Eshetu, F., Faassen, E. J., Kosten, S., & Huszar, V. L. (2013). Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology, 58(3), 552-559.
Lamas-Samanamud, G., Reeves, T., Tidwell, M., Bohmann, J., Lange, K., & Shipley, H. (2022). Changes in Chemical Structure of n-Acyl Homoserine Lactones and Their Effects on Microcystin Expression from Microcystis aeruginosa PCC7806. Environmental Engineering Science, 39(1), 29-38.
Laue, B. E., Jiang, Y., Chhabra, S. R., Jacob, S., Stewart, G. S., Hardman, A., Downie, J. A., O’Gara, F., & Williams, P. (2000). The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology, 146(10), 2469-2480.
Lee, J., Wu, J., Deng, Y., Wang, J., Wang, C., Wang, J., Chang, C., Dong, Y., Williams, P., & Zhang, L.-H. (2013). A cell-cell communication signal integrates quorum sensing and stress response. Nature chemical biology, 9(5), 339-343.
Lee, J., & Zhang, L. (2015). The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & cell, 6(1), 26-41.
Lerat, E., & Moran, N. A. (2004). The evolutionary history of quorum-sensing systems in bacteria. Molecular biology and evolution, 21(5), 903-913.
Li, J., Li, J., Meng, J., & Sun, K. (2020). Understanding of signaling molecule controlled anammox through regulating C/N ratio. Bioresource Technology, 315, 123863.
Li, X., Fekete, A., Englmann, M., Götz, C., Rothballer, M., Frommberger, M., Buddrus, K., Fekete, J., Cai, C., & Schröder, P. (2006). Development and application of a method for the analysis of N-acylhomoserine lactones by solid-phase extraction and ultra high pressure liquid chromatography. Journal of Chromatography A, 1134(1-2), 186-193.
Li, Y., Lv, J., Zhong, C., Hao, W., Wang, Y., & Zhu, J. (2014). Performance and role of N-acyl-homoserine lactone (AHL)-based quorum sensing (QS) in aerobic granules. Journal of Environmental Sciences, 26(8), 1615-1621.
Liao, L., Chen, B., Deng, K., He, Q., Lin, G., Guo, J., & Yan, P. (2023). Effect of the N-hexanoyl-L-homoserine Lactone on the Carbon Fixation Capacity of the Algae–Bacteria System. International Journal of Environmental Research and Public Health, 20(6), 5047.
Liu, L., Zeng, X., Zheng, J., Zou, Y., Qiu, S., & Dai, Y. (2022). AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review. Microbiological research, 262, 127102.
Marbun, Y. R., Yen, H. K., Lin, T.-F., Lin, H. L., & Michinaka, A. (2012). Rapid on-site monitoring of cylindrospermopsin-producers in reservoirs using quantitative PCR. Sustainable Environment Research, 22(3), 143-151.
McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S., & Bycroft, B. W. (1997). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology, 143(12), 3703-3711.
Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Reviews in Microbiology, 55(1), 165-199.
Morin, D., Grasland, B., Vallée-Réhel, K., Dufau, C., & Haras, D. (2003). On-line high-performance liquid chromatography–mass spectrometric detection and quantification of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices. Journal of Chromatography A, 1002(1-2), 79-92.
Nalley, J. O., O'Donnell, D. R., & Litchman, E. (2018). Temperature effects on growth rates and fatty acid content in freshwater algae and cyanobacteria. Algal research, 35, 500-507.
Oh, H.-S., Kim, S.-R., Cheong, W.-S., Lee, C.-H., & Lee, J.-K. (2013). Biofouling inhibition in MBR by Rhodococcus sp. BH4 isolated from real MBR plant. Applied microbiology and biotechnology, 97, 10223-10231.
Paerl, H. W., & Huisman, J. (2008). Blooms like it hot. Science, 320(5872), 57-58.
Paerl, H. W., & Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial ecology, 65, 995-1010.
Papenfort, K., & Bassler, B. L. (2016). Quorum sensing signal–response systems in Gram-negative bacteria. Nature Reviews Microbiology, 14(9), 576-588.
Parsek, M. R., & Greenberg, E. (2005). Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in microbiology, 13(1), 27-33.
Patel, N. M., Moore, J. D., Blackwell, H. E., & Amador-Noguez, D. (2016). Identification of unanticipated and novel N-acyl L-homoserine lactones (AHLs) using a sensitive non-targeted LC-MS/MS method. PloS one, 11(10), e0163469.
Rodrigues, A. M., Lami, R., Escoubeyrou, K., Intertaglia, L., Mazurek, C., Doberva, M., Pérez-Ferrer, P., & Stien, D. (2022). Straightforward N-acyl homoserine lactone discovery and annotation by LC–MS/MS-based molecular networking. Journal of proteome research, 21(3), 635-642.
Rojas, J. R., Trievel, R. C., Zhou, J., Mo, Y., Li, X., Berger, S. L., Allis, C. D., & Marmorstein, R. (1999). Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature, 401(6748), 93-98.
Ruhal, R., & Kataria, R. (2021). Biofilm patterns in gram-positive and gram-negative bacteria. Microbiological research, 251, 126829.
Sattley, W. M., & Madigan, M. T. Bacteriology. eLS, 1, 821-829.
Scott, R. (2007). Thin layer chromatography. URL chromatography-online.org/TLC/Detection-and-Quantification/Sulfuric-Acid-Spray. html.
Seed, P. C., Passador, L., & Iglewski, B. H. (1995). Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. Journal of bacteriology, 177(3), 654-659.
Šejnohová, L., & Maršálek, B. (2012). Microcystis. In Ecology of cyanobacteria II: their diversity in space and time (pp. 195-228). Springer.
Shrout, J. D., & Nerenberg, R. (2012). Monitoring bacterial twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms? Environmental science & technology, 46(4), 1995-2005.
Su, X., Steinman, A. D., Tang, X., Xue, Q., Zhao, Y., & Xie, L. (2017). Response of bacterial communities to cyanobacterial harmful algal blooms in Lake Taihu, China. Harmful algae, 68, 168-177.
Svirčev, Z., Lalić, D., Bojadžija Savić, G., Tokodi, N., Drobac Backović, D., Chen, L., Meriluoto, J., & Codd, G. A. (2019). Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Archives of toxicology, 93, 2429-2481.
Tan, C. H., Koh, K. S., Xie, C., Tay, M., Zhou, Y., Williams, R., Ng, W. J., Rice, S. A., & Kjelleberg, S. (2014). The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules. The ISME journal, 8(6), 1186-1197.
Tan, C. H., Koh, K. S., Xie, C., Zhang, J., Tan, X. H., Lee, G. P., Zhou, Y., Ng, W. J., Rice, S. A., & Kjelleberg, S. (2015). Community quorum sensing signalling and quenching: microbial granular biofilm assembly. npj Biofilms and Microbiomes, 1(1), 1-9.
Teplitski, M., Chen, H., Rajamani, S., Gao, M., Merighi, M., Sayre, R. T., Robinson, J. B., Rolfe, B. G., & Bauer, W. D. (2004). Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant physiology, 134(1), 137-146.
Thiel, V., Kunze, B., Verma, P., Wagner‐Döbler, I., & Schulz, S. (2009). New structural variants of homoserine lactones in bacteria. ChemBioChem, 10(11), 1861-1868.
Throup, J., Winson, M., Bainton, N., Bycroft, B., Williams, P., & Stewart, G. (1995). Signalling in bacteria beyond bioluminescence. Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects, 89-92.
Toyofuku, M., Nomura, N., Fujii, T., Takaya, N., Maseda, H., Sawada, I., Nakajima, T., & Uchiyama, H. (2007). Quorum sensing regulates denitrification in Pseudomonas aeruginosa PAO1. Journal of bacteriology, 189(13), 4969-4972.
Trenholm, R. A., Vanderford, B. J., Holady, J. C., Rexing, D. J., & Snyder, S. A. (2006). Broad range analysis of endocrine disruptors and pharmaceuticals using gas chromatography and liquid chromatography tandem mass spectrometry. Chemosphere, 65(11), 1990-1998.
Trufelli, H., Palma, P., Famiglini, G., & Cappiello, A. (2011). An overview of matrix effects in liquid chromatography–mass spectrometry. Mass spectrometry reviews, 30(3), 491-509.
Ullah, H., Nagelkerken, I., Goldenberg, S. U., & Fordham, D. A. (2018). Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS biology, 16(1), e2003446.
Valle, A., Bailey, M. J., Whiteley, A. S., & Manefield, M. (2004). N‐acyl‐L‐homoserine lactones (AHLs) affect microbial community composition and function in activated sludge. Environmental Microbiology, 6(4), 424-433.
Van Eeckhaut, A., Lanckmans, K., Sarre, S., Smolders, I., & Michotte, Y. (2009). Validation of bioanalytical LC–MS/MS assays: evaluation of matrix effects. Journal of Chromatography B, 877(23), 2198-2207.
Vattem, D. A., Mihalik, K., Crixell, S. H., & McLean, R. J. (2007). Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia, 78(4), 302-310.
Von Bodman, S. B., Willey, J. M., & Diggle, S. P. (2008). Cell-cell communication in bacteria: united we stand. Journal of bacteriology, 190(13), 4377-4391.
Wall, P. E. (2007). Thin-layer chromatography: a modern practical approach. Royal Society of Chemistry.
Wang, J., Ding, L., Li, K., Schmieder, W., Geng, J., Xu, K., Zhang, Y., & Ren, H. (2017). Development of an extraction method and LC–MS analysis for N-acylated-l-homoserine lactones (AHLs) in wastewater treatment biofilms. Journal of Chromatography B, 1041, 37-44.
Wang, J., Liu, Q., Ma, S., Hu, H., Wu, B., Zhang, X.-x., & Ren, H. (2019). Distribution characteristics of N-acyl homoserine lactones during the moving bed biofilm reactor biofilm development process: Effect of carbon/nitrogen ratio and exogenous quorum sensing signals. Bioresource Technology, 289, 121591.
Wang, J., Quan, C., Wang, X., Zhao, P., & Fan, S. (2011). Extraction, purification and identification of bacterial signal molecules based on N‐acyl homoserine lactones. Microbial biotechnology, 4(4), 479-490.
Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol., 21(1), 319-346.
Wetzel, R. G., & Likens, G. (2000). Limnological analyses. Springer Science & Business Media.
Wilhelm, S. W., Bullerjahn, G. S., & McKay, R. M. L. (2020). The Complicated and Confusing Ecology of Microcystis Blooms. mBio, 11(3), 10.1128/mbio.00529-00520.
Winson, M. K., Swift, S., Fish, L., Throup, J. P., Jørgensen, F., Chhabra, S. R., Bycroft, B. W., Williams, P., & Stewart, G. S. (1998). Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett, 163(2), 185-192.
Winson, M. K., Swift, S., Hill, P. J., Sims, C. M., Griesmayr, G., Bycroft, B. W., Williams, P., & Stewart, G. S. A. B. (1998). Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiology Letters, 163(2), 193-202.
Withers, H., Swift, S., & Williams, P. (2001). Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Current Opinion in Microbiology, 4(2), 186-193.
Xia, S., Zhou, L., Zhang, Z., & Li, J. (2012). Influence and mechanism of N-(3-oxooxtanoyl)-L-homoserine lactone (C8-oxo-HSL) on biofilm behaviors at early stage. Journal of Environmental Sciences, 24(12), 2035-2040.
Xiao, M., Li, M., & Reynolds, C. S. (2018). Colony formation in the cyanobacterium Microcystis. Biological Reviews, 93(3), 1399-1420.
Yan, L., Allen, M. S., Simpson, M. L., Sayler, G. S., & Cox, C. D. (2007). Direct quantification of N-(3-oxo-hexanoyl)-L-homoserine lactone in culture supernatant using a whole-cell bioreporter. Journal of microbiological methods, 68(1), 40-45.
Yang, Y., Wen, X., Liu, J., Chen, S., & Wang, B. (2023). The growth characteristics of algae in the presence of N-acylhomoserine lactones. Water Supply, 23(3), 1057-1068.
Yong, Y.-C., & Zhong, J.-J. (2010). N-acylated homoserine lactone production and involvement in the biodegradation of aromatics by an environmental isolate of Pseudomonas aeruginosa. Process Biochemistry, 45(12), 1944-1948.
Zhang, C., Ho, S.-H., Li, A., Fu, L., & Zhou, D. (2021). Co-culture of Chlorella and Scenedesmus could enhance total lipid production under bacteria quorum sensing molecule stress. Journal of Water Process Engineering, 39, 101739.
Zhao, J., Ai, G., Yang, S., Zhang, X., & Zhang, G. (2021). Detection, structural elucidation, and biological effects of diverse N-acyl-homoserine lactone signaling molecules in the plant-promoting endophytic bacterium Rhizobium oryzihabitans M15. Journal of Agricultural and Food Chemistry, 69(33), 9693-9705.
Zhu, J., Chai, Y., Zhong, Z., Li, S., & Winans, S. C. (2003). Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Applied and Environmental Microbiology, 69(11), 6949-6953.
王昱澤. (2012). 多通量定量聚合酶鏈鎖反應技術偵測水中有害藍綠菌之發展與現地應用 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市.
陳蕙珊. (2021). 金門受水池中影響微囊藻生長主要因素探討 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市.