| 研究生: |
曾貴瑜 Tseng, Kuei-Yu |
|---|---|
| 論文名稱: |
聚合型界面活性劑之合成及其在含奈米無機微粒塑膠光纖之應用研究 Fabrication and Characterization of GI Optical Fibers Containing Inorganic Nanoparticles Using Polymerizable Surfactant |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 塑膠光纖 、聚合型界面活性劑 、奈米 |
| 外文關鍵詞: | Nanoparticles, Polymerizable Surfactant, GI Optical Fibers |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗的目的在於合成聚合型界面活性劑(surfmer),與高折射率奈米銀微粒,並將之添加到低折射率單體methyl methacrylate(MMA)中,以azobisisobutyronitrile(AIBN)為起始劑,利用旋轉離心擴散聚合法製作GI型PMMA塑膠光纖棒。聚合型界面活性劑的加入,可增加導入高折射率奈米銀微粒的量,增大塑膠光纖整體折射率差,進而使開口數(NA值)變大,提升光學特性。
藉由surfmer/MMA/H2O逆微胞系統製備銀奈米微粒,探討在不同製備變因下UV吸收光譜的特性差異,所形成之最終粒子大小,以及導入塑膠光纖棒後之光學特性影響,本文均有詳細討論。由結果得知,銀奈米微粒的平均粒徑介於4~10nm之間,而且隨著W值(H2O/surfactant莫耳比)的增加而增加。在W值固定下,銀奈米微粒的粒徑也隨著氧化劑AgNO3濃度與還原劑NaBH4濃度的提升而增大,但界面活性劑濃度的增加,對粒徑並無顯著的影響。另外,使用主鏈較長之界面活性劑,所得的銀奈米微粒粒徑也較小。
To increase the numerical number (NA) of optical fibers, a series of polymerizable surfactants (surfmers) were synthesized. Gradient refractive index (GI) rods were fabricated by the method of centrifugal diffusing polymerization. Silver nanoparticles were used as high refractive index materials and methyl methacrylate (MMA) was used as a reactive low refractive index monomer. The use of surfmers was found to increase the stability of nanoparticles in polymer matrix which lead to an increase in the capacity of the polymer matrix for nanoparticles. The existence of nanoparticles in the polymer matrix increases the refractive index of rods and the NA values of the rods increases as well.
The silver nanoparticles were prepared in a surfmer/MMA/H2O reverse micellar system. The dependence of the preparing conditions on the UV absorption spectra and the nanoparticle size distributions were studied. The optical characteristics of GI plastic rods with various amounts of silver nanoparticles were also estimated. It was found that nanoparticles fabricated in this investigation were between 4 and 10 nm. The dependence of the refractive index of rods on the existence of nanoparticles was investigated. Image transmission qualities through the GI plastic rods were also evaluated.
1. 龔建華編著, “進入奈米科技”, 經要文化出版社, 2002
2. 劉瑞祥編譯, “基礎光學纖維”, 復文書局, 1986
3. 黃胤年編著, “簡易光纖通信”, 五南圖書出版公司, 2002
4. 廖建勛, “奈米技術簡介”, 化工科技與商情, 12, 2002
5. 廖建勛, “奈米材料的發展動態”, 化工資訊, 2, 1998
6. 張立德、牟季美編著, “奈米材料和奈米結構”, 滄海書局, 2001
7. P. Calandra, M. Goffredi and V. T. Liveri, Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 160, 9, 1999
8. P. Ball and L. Garwin, Nature, 355, 761, 1992
9. 何佳樺, “含奈米無機微粒塑膠光纖之製作及光學特性研究”, 國立成功大學碩士
論文, 2002
10. 黃國維, “對加速台灣推動『奈米產業落實』之建議(二)”, 化工科技與商情, 32,
2005
11. 趙承琛編著, “界面科學基礎”, 復文書局, 2002
12. I. J. Lin, J. P. Friend and Y. Zimmels, Journal of Colloid and Interface
Science, 45, 2, 378, 1973
13. J. T. Davies, Proc. 2nd Int. Congr. Surface Activity, London 1, 426, 1957
14. I. J. Lin, J. Phys. Chem., 76, 2019, 1971
15. H. F. Eicke, J. C. W. Shepherd and A. Steinemann, J. Colloid Interf.
Sci., 56, 168, 1976
16. J. H. Fendler, Chem. Rev., 87, 877, 1987
17. P. Y. Silvert, R. Herera-Urbina, N. Duvauchelle, V. Vijayakrishnan and K.
Tekaia-Elhsissen, J. Mater. Chem., 6, 573, 1996
18. C. Petit, P. Lixon and M. P. Pileni, J. Phys. Chem., 94, 1598, 1990
19. T. D. Li, L. M. Gan, C. H. Chew, W. K. Teo and L. H. Gan, Langmuir, 12,
5863, 1996
20. E. M. Egorova and A. A. Revina, Colloids and Surfaces A: Physicochemical
and Engineering Aspects, 168, 87, 1999
21. F. Debuiqne, L. Jeunieau, M. Wiame and J. B. Nagy, Langmuir, 16, 7605,
2000
22. N. Moumen, M. P. Pileni and R. A. Mackay, Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 151, 409, 1999
23. M. B. Johan and M. C. Per, J. Colloid Interface Sci., 163, 289, 1994
24. T. Hirai, T. Watanabe and I. Komasawa, J. Phys. Chem. B, 104, 8962, 2000
25. N. Moumen, M. P. Pileni and R. A. Mackay, Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 151, 409, 1999
26. T. Hirai, H. Okubo and I. Komasawa, J. Colloid Interface Sci., 235, 358,
2001
27. F. Debuigne, J. Cuisenaire, L. Jeunieau, B. Masereel and J. B. Nagy, J.
Colloid Interface Sci., 243, 90, 2001
28. “構成光纖通訊的基本媒介-光纖”, 光連雙月刊, 40, 2002
29. 賴耿陽、蘇品書編撰, “塑膠光纖應用技術”, 復漢出版社, 1988
30. 王宏宇, “集束性光學元件之製作及特性探討”, 國立成功大學碩士論文, 1999
31. J. Zubia and J. Arrue, Optical Fiber Technology, 7, 101, 2001
32. Y. Koike, H. Hatanaka and Y. Ohtsuks, Appl. Opt., 23 (11), 1779, 1984
33. Y. Ohtsuka and Y. Koike, Appl. Opt., 24 (24), 4316, 1985
34. S. Eguchi, H. Asano, A. Kannke and M. Ibamoto, Jap. J. Appl. Phys., 28
(12), 2232, 1989
35. Y. Koike, Y. Kimoto and Y. Ohtsuka, Appl. Opt., 21 (6), 1057, 1982
36. Y. Koike and Y. Ohtsuka, Appl. Opt., 23 (11), 1779, 1984
37. 陳文章, “高分子在光學上的應用”, 化工資訊, 6, 1993
38. Y. Koike, Y. Takezawa and Y. Ohtsuka, Appl. Opt., 27, 3, 486, 1988
39. Y. Koike, N. Tanio, E. Nihei and Y. Ohtsuka, Polym. Eng. Sci., 17, 1200,
1989
40. A. Tagaya, S. Teramoto, E. Nihei, K. Sasaki and Y. Koike, Appl. Opt., 36,
3, 572, 1997
41. Jap. Pat. 1-152107, 1989
42. J. H. Liu and H. T. Liu, J. Appl. Polym. Sci., 64, 849, 1997
43. I. S. Sohn and C. W. Park, Ind. Eng. Chem. Res., 40, 3740, 2001
44. 周遊, “光纖布拉格之工作原理與應用”, 光學工程, 79, 2002
45. 施明昌、黃智裕, “光纖在環境監測之應用”, 光訊, 95, 2002
46. 胡先志, “塑膠光纖網路上的吉比特通信”, 光學工程, 79, 2002
47. P. Barnickel, A. Wokaum, W. Sager and H. F. Eicke, J. Colloid Interface
Sci., 148 (1), 80, 1992
48. 何耀宗, “光通訊產業應用材料簡介”, 工業材料, 5, 2001
49. A. Guyot, Macromol. Symp., 179, 105, 2002
50. M. Antonietti and K. Landfester, Prog. Polym. Sci., 27, 689, 2002
51. C. Koeppen, R. F. Shi, W. D. Chen and A. F. Garito, J. Opt. Soc. Am. B,
15, 727, 1998
52. M. A. Losada, I. Garces, J. Mateo, I. Salinas, J. Lou and J. Zubia,
Journal of Lightwave Technology, 20, 1160, 2002