簡易檢索 / 詳目顯示

研究生: 李柏泓
Li, Po-Hung
論文名稱: 用於建構強健型數位影像浮水印之類神經網路特徵區域選取方法
Neural Network-Based Determination of Feature Regions for Robust Digital Image Watermarking
指導教授: 郭耀煌
Kuo, Yau-Hwang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 62
中文關鍵詞: 類神經網路多維度背包問題特徵偵測版權保護強健型數位浮水印
外文關鍵詞: Multidimensional Knapsack Problem, Robust Digital Watermarking, Copyright Protection, Neural Network, Feature Detector
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一種用於建構強健型數位影像浮水印之類神經網路特徵區域選取方法。此方法是從特徵偵測器所獲得之特徵區域中選出適當用於嵌入浮水印,以達到對任意的非惡意攻擊能具有最大的強健程度之目標。而此選擇方法共有二個階段包含使用類神經網路分類和選擇適當的特徵區域。類神經網路分類器是用來評估每一個特徵區域對於非惡意攻擊時所具有的抵抗能力。在第二階段會依據上述所得到的結果,在顧及影像品質下而選擇出能達到最大抵抗攻擊的特徵區域,而此部分則是屬於最佳化問題,在經由數學模型的轉換後形成一個多維度背包問題(MDKP),因此就能套用現有的基因演算法解決此問題。而所選擇的特徵區域則是參考了特徵區域裡每一個像素的局部方向性和視覺感知調整權重值用來嵌入浮水印。經由類似的步驟就能夠擷取出浮水印而且不需再使用原始影像。而驗證方法則是選用了StirMark 3.1當作攻擊基準方式用來測試在嵌入浮水印的影像上。在本論文裡的實驗結果則顯現出所選擇的特徵區域的確可以提升對於任意的非惡意攻擊的強健程度。而更進一步的是此特徵區域浮水印演算法在強健程度上則是優於其他的方法。

    In this thesis, a neural network-based determination of feature region is proposed for robust digital image watermarking algorithm. This method targets to select an adequate set of feature regions with maximum robustness to various non-malicious attacks from those obtained by any feature detector. It consists of two stages including the Genetic Algorithm-based Neural Network (GA-based NN) [HUA08] classification stage and the feature set selection stage. The neural network classifier is used to determine the resistance of each feature region against non-malicious attacks. According to the result of attack resistance, the feature regions are selected to achieve maximal resistance under an image visual quality in the second stage. This work is formulated as a multidimensional knapsack problem (MDKP) and solved by a heuristic approach based on genetic algorithm. The watermark is embedded into these selected regions according to the local orientation and perceptual weight of each pixel. Similarly, the proposed watermarking algorithm extracts the watermarks independently and blindly according to the above procedure. In order to verify the proposed method, the attacks adopted by the benchmark, StirMark 3.1, are applied to the watermarked images. The experimental results in this thesis reveal that the watermarked regions selected are able to increase the resistance to non-malicious attacks. Besides, the watermarking algorithm based on the proposed feature region method is confirmed to have better performance than the other methods compared.

    LIST OF TABLES 10 LIST OF FIGURES 11 CHAPTER 1 INTRODUCTION 12 CHAPTER 2 FEATURE DETECTORS AND MOTIVATION 19 2.1 FEATURE DETECTORS 19 2.1.1 Harris-Laplacian Detector 20 2.1.2 Scale Invariant Feature Transform (SIFT) 22 2.1.3 Harris-Affine Detector 24 2.2 PROBLEM FORMULATION 27 CHAPTER 3 FEATURE SET SELECTION BASED ON GA-BASED NN AND MULTIDIMENSIONAL KNAPSACK PROBLEM 32 3.1 GENETIC ALGORITHM-BASED NEURAL NETWORK 33 3.1.1 System Architecture 34 3.2 FEATURE SET SELECTION 37 CHAPTER 4 PROPOSED WATERMARKING PROCEDURE 42 4.1 WATERMARK EMBEDDING ALGORITHM 42 4.2 WATERMARK DETECTION ALGORITHM 45 CHAPTER 5 EXPERIMENTAL RESULTS 47 5.1 COMPARISONS WITH OTHER METHODS 48 5.2 CLASSIFICATION ERROR RATE COMPARISONS BETWEEN GA-BASED NN AND BPN 55 CHAPTER 6 CONCLUSION AND FUTURE WORK 57 REFERENCES 58

    [BAS02] P. Bas, J. M. Chassery, and B. Macq, “Geometrically invariant watermarking using feature points,” IEEE Trans. Image Processing, Vol. 11, No. 9, pp. 1014-1028, Sept. 2002.
    [CAS04] M. D. d. Castillo, and J. I. Serrano, “A multistrategy for digital text categorization from imbalanced documents”, Special issue on learning from imbalanced datasets, ACM SIGKDD Explorations Newsletter Publisher, pp. 70-79, 2004.
    [CEL02] M. U. Celik, G. Sharma, E. Saber, and A. M. Tekalp, “Hierarchical watermarking for secure image authentication with localization,” IEEE Trans. Image Processing, Vol. 11, No. 4, pp.585-594, April 2002.
    [CHE01] B. Chen and G. W. Wornell, "Quantization Index Modulation: A class of provably good methods for digital watermarking and information embedding," IEEE Trans. Information Theory, Vol. 47, No.4, pp. 1423-1443, May 2001.
    [CHU98] P. C. Chu and J. E. Beasley, “A genetic algorithm for the multidimensional knapsack problem,” Journal of Heuristics, Vol. 4, pp.63-86, 1998.
    [COX97] I. J. Cox, F. T. Leighton and T. Shamoon, "Secure Spread Spectrum Watermarking for Multimedia," IEEE Trans. Image Processing, Vol. 6, No.12, 1997.
    [COX01] I. J. Cox, M. L. Miller, and J. A. Bloom, Digital Watermarking, San Francisco, CA: Morgan Kaufman, 2001.
    [DON05] P. Dong, J. G. Brankov, N. P. Galatsanos, Y. Yang, and F. Davoine, “Digital watermarking robust to geometric distortions,” IEEE Trans. Image Processing, Vol. 14, No. 12, pp. 2140–2150, Dec. 2005.
    [FAB00] Fabien A. P. Petitcolas, “Watermarking schemes evaluation,” IEEE Signal Processing Magazine, Vol. 17, No. 5, pp. 58–64, Sept. 2000.
    [HAR88] C. Harris and M. Stephen, “A combined corner and edge detector,” in Proc. 4th Alvey Vision Conference, 1988.
    [HER01] A. Herrigel, S. Voloshynovskiy, and Y. Rytsar, “The watermark template attack,” in Proc. SPIE Security and Watermarking of Multimedia Contents III, San Jose, CA, Jan. 2001.
    [HOL75] J. Holland, Adaption in natural and artificial systems, MIT Press, 1975.
    [HON07] X. Hong S. Chen, and C. J. Harris, “A Kernel-Based Two-class Classifier for Imbalanced Data Sets”, IEEE Trans. On Neural Network, vol. 18, no. 1, pp 28-41, 2007.
    [HUA08] K. C. Huang, Y. H. Kuo and I. C. Yeh, “A Novel Fitness in Genetic Algorithms to Optimize Neural Networks for Imbalanced Data Sets,” in Proc. 8th Int. conf. Intelligent Systems Design and Applications, 2008. (accepted)
    [KAD04] T. Kadir, A. Zisserman, and M. Brady, “An affine invariant salient region detector,” in Proc. Of the 8th European Conf. Computer Vision, pp. 404-416, 2004.
    [KEL04] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems, Springer, Berlin, 2004.
    [KIM03] H. S. Kim and H. K. Lee, “Invariant image watermarking using Zernike moments,” IEEE Trans. Circuits Syst. Video Technol., Vol. 13, No. 8, pp. 766–775, Aug. 2003.
    [KUT98] M. Kutter, “Watermarking resisting to translation, rotation and scaling,” in Proc. SPIE Multimedia Systems and Applications, Vol. 3528, pp. 423-431, Nov. 1998.
    [LEE06] H. Y. Lee, H. Kim and H. K. Lee, “Robust image watermarking using local invariant features,” Journal SPIE, Optical Engineering, Vol. 45, No. 3, March 2006.
    [LEU03] F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S. Tam, “Tuning of the Structure and Parameters of a Neural Network Using an Improved Genetic Algorithm”, IEEE Trans. On Neural Network, vol. 14, no. 1, pp 79-88, 2003.
    [LIN97] T. Lindeberg and J. Garding, “Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure,” Image and Vision Computing, Vol. 15, No. 6, pp. 415-434, 1997.
    [LIN99] E. T. Lin and E. J. Delp, “Review of fragile image watermarks,” in Proc. of ACM Multimedia and Security Workshop, pp. 25-29, Oct. 1999.
    [LIN01] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, M. L. Miller, and Y. M. Lui, “Rotation, scale and translation resilient watermarking for image,” IEEE Trans. Image Processing, Vol. 10, No. 5, pp. 767-782, May 2001.
    [LOW04] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Computer Vision, Vol. 60, No. 2, pp. 91-110, Nov. 2004.
    [LU06] C. S. Lu, S. W. Sun, C. Y. Hsu, and P. C. Chang, “Media hash-dependent image watermarking resilient against both geometric attacks and estimation attacks based on false positive-oriented detection,” IEEE Trans. Multimedia, Vol. 8, No. 4, pp. 668-685, August 2006.
    [MIK01] K. Mikolajczyk and C. Schmid, “Indexing based on scale invariant interest points,” in Proc. of the 8th international conference on Computer Vision, Vancouver, Canada, pp. 525-531, 2001
    [MIK04] K. Mikolajczyk and C. Schmid, “Scale and affine invariant interest point detectors,” Int. J. Computer Vision, Vol. 60, No. 1, pp. 63-86, Oct. 2004.
    [MIK05] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. V. Gool, “A comparison of affine region detectors,” Int. J. Computer Vision, Vol.65, No 1-2, pp. 43-72, Nov. 2005.
    [MOR05] R. J. Moraga, G. W. Depuy, and G. E. Whitehouse, “Meta-RaPS approach for the 0-1 Multidimensional Knapsack Problem,” Computers & Industrial Engineering, Vol. 48, pp.83-96, 2005.
    [ORU98] J. ÓRuanaidh and T. Pun, “Rotation, scale and translation invariant spread spectrum digital image watermarking,” Signal Processing, Vol. 66, No 3, pp. 303-317, May 1998.
    [PER00] S. Pereira and T. Pun, “Robust template matching for affine resistant image watermarks,” IEEE Trans. Image Processing, Vol. 9, No. 6, pp. 1123-1129, June 2000.
    [SCH92] J. D. Schaffer, D. Whitley, and L. J. Eshelman, “Combinations of genetic algorithms and neural networks: A survey of the state of the art”, in Proc. Int. Workshop Combinations Genetic Algorithms Neural Networks, pp. 1-37, 1992.
    [SEO04] J. S. Seo and C. D. Yoo, “Localized image watermarking based on feature points of scale-space representation,” Pattern Recognition, Vol. 37, Issue 7, pp. 1365-1375, July 2004.
    [SEO06] J. S. Seo and C. D. Yoo, “Image watermarking based on invariant regions of scale-space representation,” IEEE Trans. Signal Processing, Vol. 54, No. 4, pp. 1537-1549, April 2006.
    [SIM03] D. Simitopoulos, D. E. Koutsonanos, and M. G. Strintzis, “Robust image watermarking based on generalized radon transformations,” IEEE Trans. Circuits Syst. For Video Technol., Vol. 13, No. 8, pp. 732-745, August 2003.
    [TAN03] C. W. Tang and H. M. Hang, “A feature-based robust digital image watermarking scheme,” IEEE Trans. Signal Processing, Vol. 51, No. 4, pp. 950-959, April 2003.
    [TSA07] J. S. Tsai, W. B. Huang, C. L. Chen, Y. H. Kuo, "A Feature-based Digital Image Watermarking for Copyright Protection and Content Authentication," IEEE Int. Conf. Image Processing, Sept. 2007.
    [TUY04] T. Tuytelaars and L. V. Gool, “Matching widely separated views based on affine invariant regions,” in Int. J. Computer Vision, Vol. 59, No. 1, pp. 61-85, 2004
    [VOL99] S. Voloshynovskiy, A. Harrigel, N. Baumgartner, and T. Pun, “A stochastic approach to content adaptive digital image watermarking,” in Proc. Int. Workshop on Information Hiding, LNCS Vol. 1768, pp. 211-236, Sep. 1999.
    [VOL01] S. Voloshynovskiy, F. Deguillaume, and T. Pun, “Multibit digital watermarking robust against local nonlinear geometrical distortions,” IEEE International Conference on Image Processing, Thessaloniki, Oct. 2001.
    [WAN07] X. Wang, J. Wu, and P. Niu, “A new digital image watermarking algorithm resilient to desynchronization attacks,” IEEE Trans. Information Forensics and Security, Vol. 2, No. 4. pp. 655-663, Dec. 2007.
    [WON01] P. W. Wong, and N. Memon, “Secret and public key image watermarking schemes for image authentication and ownership verification,” IEEE Trans. Image Processing, Vol. 10, No. 10, pp. 1593-1601, Oct. 2001.
    [XU06] L. Xu and M.Y. Chow, “A Classification Approach for Power Distribution Systems Fault Cause identification”, IEEE Trans. On Power System, vol.21, pp. 53-60, no. 1, 2006.

    下載圖示 校內:2013-08-25公開
    校外:2013-08-25公開
    QR CODE