簡易檢索 / 詳目顯示

研究生: 曾庭科
Tseng, Ting-Ke
論文名稱: 以氧化錳觸媒焚化處理含氯揮發性有機化合物之研究
The Catalytic Incineration of Chlorinated Volatile Organic Compounds Over a γ-Alumina Supported Manganese Oxide Catalyst
指導教授: 朱信
Chu, Hsin
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 180
中文關鍵詞: 活性衰退回收率產物分佈模式模擬三氯乙烯觸媒焚化氧化錳載體觸媒三氯甲烷二氯乙烷
外文關鍵詞: Trichloroethylene, Catalytic incineration, Dichloroethane, Trichloromethane, Deactivation, Model simulation, Products Distribution, Recovery, MnOX/γ-Al2O3
相關次數: 點閱:133下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   石化工業製程所排放廢氣中常含有揮發性有機物VOCs(Volatile Organic Compounds),由於VOCs具有高度的光化學反應力,在陽光下經由紫外線照射,容易被氧化形成游離基(radicals),會再與大氣中的其它成份如NO2、O3反應,形成高濃度的臭氧、空氣污染煙霧(Smog)和致癌物質,如醛、酮及PANs等,故VOCs是一種急需處理的空氣污染物。

      三氯乙烯(Trichloroethylene, TCE),二氯乙烷(Dichloroethane, DCEA)及三氯甲烷(Trichloromethane, TCM)為工業上常用的含氯有機溶劑,含氯有機化合物在環境中之轉化過程(fate)甚慢,易於環境中累積。在毒性方面,此類化合物因具有滲透、脂溶及揮發等性質,所以進入人體的途徑多為吸入或接觸,並對於人體呼吸系統、肝、腎、造血系統等造成危害。含氯有機溶劑大部分已被證實具有動物致癌性。

      本研究以自行製備之觸媒Mn2O3/γ-Al2O3、Pt/γ-Al2O3及NiO/γ-Al2O3觸媒焚化處理含氯揮發性有機物,結果發現在轉化率方面以Pt/γ-Al2O3的效果最好,Mn2O3/γ-Al2O3次之,NiO/γ-Al2O3最差;而在成本的考量下,則以Mn2O3/γ-Al2O3的成本最低,NiO/γ-Al2O3次之,而Pt/γ-Al2O3最高。綜合比較下,我們選擇Mn2O3/γ-Al2O3作為觸媒焚化處理含氯揮發性有機物的實驗主角,並以各種輔助實驗如BET、XRD、EDS等,觀察Mn2O3/γ-Al2O3觸媒在製備過程中的含浸、鍛燒及還原階段之特性,發現在8小時600℃條件下鍛燒後的觸媒可得最佳之晶相。同時發現觸媒在製備的過程中,不因含浸、鍛燒或還原而改變其孔洞形狀,孔洞形狀皆為墨水瓶型之結構。

      以不同之操作參數來觀察三種含氯揮發性有機化合物(Cl-VOCs)轉化率改變的情形,結果發現Cl-VOCs之轉化率,會隨著進流溫度的上升而增加、氧濃度的增加而增加;但隨進流濃度及空間流速的增加,Cl-VOCs之轉化率卻有減少的趨勢。在處理三氯乙烯的實驗中發現有C2Cl4之中間產物生成。在觸媒活性衰退的研究方面,高溫下(500℃) 觸媒活性衰退的情形不若低溫(365℃)明顯。由EDS實驗知觸媒經反應後,其表面會有Cl的生成。由XRD繞射圖我們發現含浸於載體γ-Al2O3上之Mn(NO3)2在經過鍛燒之後變成Mn2O3之晶相,而在通氫還原之後則形成Mn3O4之結晶相,此結晶相應為觸媒活性之主要結構。

      此外,觸媒焚化處理二氯乙烷的實驗中發現有中間產物氯乙烯(C2H3Cl)的生成。在觸媒活性衰退試驗方面,觸媒活性衰退情形在高溫不若低溫明顯。在EA實驗中發現觸媒反應後有積碳的情形。並且由EDS以及化學滴定方法都可以找到觸媒表面有Cl吸附的證據。在XRD圖譜中衰退後晶相有Mn2O3的出現。由SEM的mapping實驗發現在觸媒衰化後其Mn金屬密集度會降低。最後在孔性分析發現觸媒活性衰退前後,其孔洞形狀不變,均為墨水瓶型。

      於觸媒焚化處理三氯甲烷的實驗中並無發現有中間產物的生成。在EA實驗中發現觸媒反應後有積碳的情形。並且由EDS以及化學滴定方法都可以找到觸媒表面有Cl吸附的證據。最後在孔性分析發現觸媒活性衰退前後,其孔洞形狀不變,亦均為墨水瓶型。

      為了尋求最佳反應動力模式,採用最常在文獻上被討論並使用的三種反應動力模式:power-rate law、Mars and van Krevelen model、Langmuir-Hinshelwood model,並觀測實驗數據之符合情形,以求取最佳反應動力模式。本實驗以微分型反應器設計方法求取焚化VOCs觸媒反應動力模式,在實驗操作範圍內對三氯乙烯而言,反應以Mars and van Krevelen model描述較為適當。所求得之觸媒反應之活化能為33.4 kJ/mole(觸媒還原反應)及43.5 kJ/mole(觸媒氧化反應)。以1,2-二氯乙烷(1,2-Dichloroethane)而言,最佳反應動力模式之套適,結果以Power-rate law描述較為適當,求得觸媒反應之活化能Ea= 47.4 KJ/mole。以三氯甲烷(Tichloromethane)而言,最佳反應動力模式之套適,結果以Mars and van Krevelen model描述較為適當,求得觸媒反應之活化能Ea=55.8 kJ/mole(觸媒還原反應)及61.4 kJ/mole(觸媒氧化反應)。

      本研究亦利用Chemking電腦軟體模擬觸媒焚化處理TCM的情形。利用所蒐集到的各物種熱力學資料以及文獻記載之可能發生的反應方程式,利用Mars and van Krevelen model的氧化還原反應概念,搭配柱塞流式反應器的設計理念進行觸媒焚化處理TCM的模擬。結果發現,Mars and van Krevelen model的觸媒氧化還原反應為整個催化反應之控制步驟;加入觸媒反應進行模擬時,模擬之TCM反應溫度T50明顯由1500K降至550K左右,此模擬之TCM轉化率與實驗值比較,發現其結果是一致的。同時也與模式套適之結果相吻合。由此更可推斷Mars and van Krevelen model的氧化還原反應概念適合用來描述觸媒焚化處理TCM的情形。

      Halogenated VOCs emissions are associated to a wide range of industrial processes, for instance, trichloroethylene (TCE), dichloroethane (DCEA) and Trichloromethane (TCM) are mainly used in metal degreasing processes and known to be hazardous to the environment and public health. The chlorinated VOC decomposition over a Mn2O3/γ-Al2O3 catalyst in a fixed bed reactor was conducted in this study. Preliminarily, three catalysts including Mn2O3/γ-Al2O3, NiO/γ-Al2O3 and Pt/γ-Al2O3 were used to incinerate TCE and the results show that the Mn2O3/γ-Al2O3 catalyst has the best performance.

      The Mn2O3/γ-Al2O3 powders were prepared by the incipient wetness impregnation method with aqueous solutions of manganese nitrate. The catalysts were characterized by DTA-TGA, XRD, porosity analysis, SEM, EDX, and XPS. The results show that the main distinct weight loss is found at the temperature around 373K and 873K, the MnO is the only observed crystal phase on the fresh catalyst, the SEM image of the MnO impregnated γ-Al2O3 support is much different from the calcined catalyst, and the Mn element quantity on the catalyst surface is higher than that of the impregnated support.

      The effects of operating parameters, such as inlet temperature, space velocity, Cl-VOCi inlet concentration, and oxygen concentration on the catalytic incineration of Cl-VOCi over the Mn2O3/γ-Al2O3 catalyst were then performed. The results show that conversion of Cl-VOCi increases as inlet temperature and oxygen concentration increase, and decreases with the increases of Cl-VOCi concentration and space velocity.

      The activity of the catalyst decreases significantly with time while TCE incineration is operated under a low temperature, 365°C. However, the activity of the catalyst does not change much while the operating temperature is as high as 500°C. The catalysts were characterized by the surface and pore size analysis, XRD, XPS, EDS and SEM before and after the tests. The results show that the catalytic crystal is Mn2O3, the catalytic deactivation is not due to carbonaceous material, and the chlorine element is adsorbed on the surface of catalysts.

      The products and reactants distributions from the oxidation of Cl-VOCi over Mn2O3/γ-Al2O3 were analyzed by GC. The results show that the TCE conversion starts from 5% at 443K, then rises to 100% in the 673~873K ranges, and the CO2 yield also pushes to 99% at the same temperature ranges. HCl and Cl2 are the other main products with little halogenated VOC intermediates.

      The results of the DCEA destruction show that the DCEA conversion starts from 15% at 450K, then rises to 100% in the 700~800K ranges, and the CO2 yield also pushes to 100% at the same temperature ranges. HCl and Cl2 are the other main products with little halogenated VOC intermediates.

      The products and reactants distributions from the oxidation of TCM over MnOX/γ-Al2O3 were carried out too. The results show that the TCM conversion starts from 7% at 523K, then rises to 100% in the 700~800K ranges, and the CO2 yield also pushes to 100% at the same temperature ranges. HCl and Cl2 are the other main products.

      Experimental results indicate that the oxidation kinetic behavior of TCE, TCM and DCEA with the catalyst can be expressed by using the rate expression of the Mars and van Krevelen model and the power-rate law, respectively. The experimental data are also compared with those predicted from the kinetic model by substituting the same condition with experiment state.

      A study of detailed chemical kinetic mechanism describing the catalytic incineration of TCM is presented. The mechanism involves the participation of 41 species in 87 elementary reactions. This mechanism is subsequently used to calculate the stable species concentration of the reactor exit of the TCM catalytic incineration over the Mn2O3/γ-Al2O3 catalyst. Calculations are performed by using the Chemkin III PLUG code. Result show that the catalyst is the significantly role of the catalytic incineration of TCM over the Mn2O3/γ-Al2O3 catalyst.

    摘要 VI ABSTRACT VIII LIST OF TABLES E LIST OF FIGURE G NOMENCLATURE i   Greek Symbols iii   Abbreviations iv CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURES REVIEW 4   2.1 CHLORINATED HYDROCARBONS 4   2.2 THE PREPARATION OF CATALYTIC MATERIALS 6     2.2.1 Catalyst Supports 6       2.2.1.1 Alumina 6       2.2.1.2 Silica 7       2.2.1.3 Titanium Dioxide 7       2.2.1.4 Zeolite 8     2.2.2 Making the Finished Catalyst 8       2.2.2.1 Impregnation 8       2.2.2.2 Precipitation 9       2.2.2.3 Special Preparative Methods 9     2.2.3 Fixing the Catalytic Species 11     2.2.4 Drying 12     2.2.5 Calcination 12   2.3 CATALYST CHARACTERIZATION 12     2.3.1 Physical Properties of Catalysts 12       2.3.1.1 Porosity of the Catalysts 12       2.3.1.2 Surface Area and Pore Size Measurements 13     2.3.2 Chemical Properties 14       2.3.2.1 Temperature Programmed Techniques 14       2.3.2.2 Analysis by X-Ray Diffraction (XRD) 16       2.3.2.3 X-Ray Photoelectron Spectroscopy (XPS) 16   2.4 EFFECT OF OPERATION PARAMETER 17   2.5 CATALYST DEACTIVATION 18     2.5.1 Poisoning 18     2.5.2 Fouling 19     2.5.3 Sintering 19   2.6 KINETIC ANALYSIS 19     2.6.1 Differential reactor operation 19     2.6.2 power-rate law 21     2.6.3 Mars and van Krevelen model 22     2.6.4 Langmuir-Hinshelwood model 23   2.7 NUMERICAL PROGRAM STRUCTURE 26   2.8 SENSITIVITY ANALYSIS PROGRAM STRUCTURE 28 CHAPTER 3 EXPERIMENTAL METHODS 40   3.1 PREPARATION OF CATALYST 40   3.2 EXPERIMENTAL INSTRUMENTS 40   3.3 CATALYST CHARACTERIZATION 42     3.3.1 Physical Properties of The Catalysts 42     3.3.2 Differential Thermal Analysis-Thermogravimetric Analysis        (DTA-TGA) 42     3.3.3 X-ray Diffraction Spectroscopy (XRD) 42     3.3.4 X-ray Photoelectron Spectroscopy (XPS) 42     3.3.5 Temperature Programmed Reduction (TPR) 43   3.4 EXPERIMENTAL PROCEDURES 43   3.5 NUMERICAL PROGRAM STRUCTURE 45   3.6 SENSITIVITY ANALYSIS PROGRAM STRUCTURE 47 CHAPTER 4 RESULTS AND DISCUSSION 56   4.1 THE PERFORMANCE OF CATALYSTS 56   4.2 CHARACTERIZATION OF CATALYST 57     4.2.1 The Porosity of The Catalysts at Various Status 57     4.2.2 Surface Structure (XRD, TGA/DTA, XPS, TPR, SEM/EDS) 57   4.3 EFFECT OF OPERATION PARAMETERS 59     4.3.1 Trichloroethylene 59     4.3.2 Dichloroethane 60     4.3.3 Trichloromethane 61   4.4 CHLORINE POISONING EFFECT 61   4.5 PRODUCTS DISTRIBUTION 63     4.5.1 Products Distribution of TCE Decomposition 64       4.5.1.1 The Carbon And Chlorine Atoms Recovery 64       4.5.1.2 Products Distribution 64     4.5.2 Products distribution of DCEA decomposition 67       4.5.2.1 The Carbon And Chlorine Atoms Recovery 67       4.5.2.2 Products Distribution 67     4.5.3 Products Distribution of TCM decomposition 70       4.5.3.1 The Carbon And Chlorine Atoms Recovery 70       4.5.3.2 Products Distribution 70   4.6 KINETIC ANALYSIS 72     4.6.1 Transport Effects 72     4.6.2 Best-Fit of The Kinetic Model 73       4.6.2.1 Power Rate Law 73       4.6.2.2 Mars and van Krevelen Model 74       4.6.2.3 Langmuir-Hinshelwood Model 75     4.6.3 Verification of the Kinetic Model 80   4.7 NUMERICAL ANALYSIS 83 CHAPTER 5 CONCLUSIONs AND RECOMMENDATIONS 144 REFERENCES 147 APPENDIX 1 THE OPERATION PARAMETERS RAW DATA 154   A1.1 VARIOUS TCM CONCENTRATION 154   A1.2 VARIOUS SPACE VELOCITY 155   A1.3 VARIOUS O2 CONCENTRATION 156 APPENDIX 2 THE KINETIC ANALYSIS RAW DATA 157   A2.1 FIX O2 CONCENTRATION 157   A2.2 FIX TCM CONCENTRATION 161 APPENDIX 3 COMPUTATION RAW DATA 165   A3.1 PLUG INPUT DATA 165   A3.2 SURFACE INPUT DATA 166   A3.3 TCM GAS PHASE REACTION INPUT DATA 167   A3.4 THERMODATA 175

    1. Taylor, S.H.; Heneghan, C.S.; Hutchings, G.J.; Hudson, I.D. The activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds. Catal. Today 2000, 59, 249-259.

    2. de Nevers, N. Air Pollution Control Engineering, 2nd ed. McGraw-Hill, Singapore, 2000; 571-573.

    3. Artizzu-Duart, P.; Brullé, Y.; Gaillard, F.; Garbowski, E.; Guilhaume, N.; Primet, M. Catalytic combustion of methane over copper- and manganese-substituted barium nexaaluminates. Catal. Today 1999, 54, 181-190.

    4. Toledo, J.M., Corella, J., Sanz, A., Noble metal-based catalysts for total oxidation of chlorinated hydrocarbons. Environ. Prog. 2001, 20, 167-174,.

    5. van der Vaart, D. R.; Vatavuk, W. M.; Wehe, A. H. Thermal and catalytic incinerators for the control of VOCs. Journal of Air & Waste Management Assocciation 1991, 41(1), 92-98.

    6. van der Vaart, D. R.; Vatavuk, W. M.; Wehe, A. H. The cost estimation of thermal and catalytic incinerators for the control of VOCs. J. Air & Waste Manag. Assoc. 1991, 41(4), 497-501.

    7. Agarwal, S. K.; Spivey, J. J.; Butt, J. B. Catalyst deactivation during deep oxidation of chlorohydrocarbons. Appl. Catal. A: General 1992, 82, 259-275.

    8. Bickle, G. M.; Suzuki, T.; Mitarai, Y. Catalytic destruction of chlorofluorocarbons and toxic chlorinated hydrocarbons. Appl. Catal. B 1994, 4, 141-153.

    9. Rossin, J. A.; Farris, M. M. Catalytic oxidation of chloroform over a 2% platinum alumina catalyst. Ind. Eng. Chem. Res. 1993, 32, 1024-1029.

    10. Kang, Y. M.; Wan, B. Z. Effects of acid or base additives on the catalytic combustion activity of chromium and cobalt oxides. Appl. Catal. A: General 1994, 114, 35-49.

    11. Drago, R. S.; Jurczyk, K.; Singh, D. L.; Young, V. Low-temperature deep oxidation of hydrocarbons by metal oxides supported on carbonaceous materials. Appl. Catal. B: Environ. 1995, 6, 155-168.

    12. Watanabe, N.; Yamashita, H.; Miyadera, H.; Tominaga, S. Removal of unpleasant odor gases using an Ag-Mn catalyst. Appl. Catal. B: Environ. 1996, 8, 405-415.

    13. Spivey, J.; Butt, J.; Deactivation of catalysts in the oxidation of volatile organic compounds. Catal. Today 1992, 11, 465-500.

    14. Wang, Y.; Shaw, H.; Ferreuto R. Catalytic oxidation of trace concentrations of trichloroethylene over 1.5% Pt on γ-Al2O3. ACS Symposium Series 1992, 45, 125-140.

    15. Yu, T.; Shaw, H.; Ferreuto R. Catalytic oxidation of trichloroethylene over PdO catalysts. ACS Symposium Series 1992, 45, 141-152.

    16. Simone, D.; Kennelly, T.; Brungard, N.; Ferreuto R. Reversible Poisoning of Palladium catalysts for Methane oxidation. Appl. Catal. 1991, 70, 87-100.

    17. Muller, H.; Deller, K.; Despeyroux, B.; Peldszue, E.; Kammerhofer, P.; Kuhn, W.; Spielmannleitner, R.; Stoger, M. Catalytic Purification of Waste Gases Containing Chlorinated Hydrocarbons with Precious Metal catalysts. Catal. Today 1993, 17, 383-390.

    18. Fridel, I.; Frost, A.; Herbert, K.; Meyer, F.; Summers, J. New catalyst technologies for the destruction of halogenated hydrocarbons and volatile organics. Catal. Today 1993, 17, 367-382.

    19. Bond, G.C.; Rosa, F. Destruction of chlorinated methane by catalytic hydrolysis. Catal. Lett. 1996, 39, 261–263.

    20. van den Brink, R.W.; Mulder, P.; Louw, R.; Sinquin, G.; Petit, C.; Hindermann, J.P. Catalytic oxidation of dichloromethane on γ-Al2O3: A combined flow and infrared spectroscopy study. J. Catal. 1998, 180, 153–160.

    21. Haber, J.; Machej, T.; Derewinski, M.; Janik, R.; Krysciak, J.; Sadowska, H. On the mechanism of catalytic-oxidation of CH2Cl2 on γ-Al2O3 and its oscillatory behavior. Phys. Chem. 1996, 197, 97-112.

    22. Feijen-Jeurissen, M.M.R.; Jorna, J.J.; Nieuwenhuys, B.E.; Sinquin, G.; Petit, C.; Hindermann, J.P. Mechanism of catalytic destruction of 1,2-dichloroethane and trichloroethylene over γ-Al2O3 and γ-Al2O3 supported chromium and palladium catalysts. Catal. Today 1999, 54, 65-79.

    23. Ramanathan, K.; Spivey, J.J. Combust. Catalytic oxidation of 1,1-dichloroethane. Sci. Tech. 1989, 63, 247.

    24. Imamura, S.; Tarumoto, H.; Ishida, S. Decomposition of 1,2-dichloroethane on titanium dioxide/silica. Ind. Eng. Chem. Res. 1989, 28, 1449-1452.

    25. Lago, R.M.; Greene, M.L.H.; Tsang, S.C.; Odlyka, M. Catalytic decomposition of chlorinated organics in air by copper chloride based catalysts. Appl. Catal. B: Environ. 1996, 8, 107-121.

    26. Satterfield, C.N. Heterogeneous catalysis in practice. McGraw-Hill: New York, 1980, 86-92.

    27. John, C.S.; Scurrell, M.S. Catalysis, The Chemical Society: London, 1977, vol. I, Chapter 4, p. 136.

    28. Ward, J.W. The nature of active sites on zeolites: 1. The decationated Y zeolites. J. Catal. 1967, 9, 225.

    29. Weisz, P.B.; Frilette, V.J. Intracrystalline and molecular-shape-selective catalysis by zeolites salts. J. Phys. Chem. 1960, 64, 382.

    30. Komiyama, M. Design and preparation of impregnated catalysis. Catalysis Reviews: Sci. Eng. 1985, 27(2), 342-372.

    31. Thomas, A.H.; Brundrett, C.P. Catalyst develoment: Lab to commercial scale. Chem. Eng. Prog. 1980, 76(6), 41-45.

    32. Worstell, J.H. Succeed at catalyst upgrading. Chem. Eng. Prog. 1992, 88(6), 33-39.

    33. Stiles, A. Catalyst manufacture. Laborarory and commercial preparations, Marcel Dekker: New York, 1983.

    34. Lieber, E.; Morritz, F.L. The uses of Raney nickel. Adv. Catal. 1953, 5,417.

    35. Anderson, R., and Dawson, P.T. Experimental Methods in Catalytic Research. Academic Press: New York, 1976.

    36. Delannay, F. Characterization of Heterogeneous Catalysts. Marcel Dekker: New York 1984.

    37. Deviney, M.L., and Gland, J. Catalyst Characterization Science: Surface and Solid State Chemistry. ACS Symposium Series No. 288. Washington, D.C.: American Chemical Society, 1985.

    38. Farrauto, R.J.; Hobson, M.C. Catalyst characterization. In encyclopedia of physical science and technology, Vol 2, ed. Robert A. Meyers. New York, Academic Pree, 735-761.

    39. Hurst, N.W.; Gentry, S.J.; Jones, A.; McNicol, B.D. Temperature programmed reduction. Catal. Rev. –Sci. Eng. 1982, 24(2), 233-309.

    40. Falconer, J.L.; Schwarz, J.A. Temperature-programmed desorption and reaction: application to supported catalysts. Catal. Rev. –Sci. Eng. 1983, 25(2), 141-227.

    41. Anderson, J.R. Structure of Metallic catalysts. Academic Press: London, 1975.

    42. Ertl, G.; Kűpper, J. Low energy electrons and surface chemistry, VCH: Weinheim, 1985.

    43. Ghosh, P.K. Introduction to photoelectron spectroscopy, Wiley: New York, 1983.

    44. Carlson, T.A. Photoelectron and auger spectroscopy, Plenum: New York, 1975.

    45. Feuerbacher, B.; Fitton, B.; Willis, R.F. Photoemission and the electronic properties of surface, Wiley: New York, 1978.

    46. Cardona, M.; Ley, L. Photoemission in solids. Springer: Berlin, 1978.

    47. Briggs, D.; Seah, M.P. Practical surface analysis by auger and X-ray photoelectron spectroscopy, Wiley: New York, 1978.

    48. Wanger, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenburg, G.E. Handbook of X-ray photoelectron spectroscopy, Perkin Elmer, Eden Prairie: Minnesota, 1979.

    49. Spivey, J. J. Complete catalytic oxidation of volatile organics. Ind. & Eng. Chem. Res. 1987, 26(11), 2165-2180.

    50. Heyes, C. J.; Irwin, J. G.; Johnson, H. A.; Moss, R. L. The catalytic oxidation of organic air pollutants, part 1. single metal oxide catalysts. J Chem. Technol. Biotechnol. 1982, 32, 1025-1033.

    51. Tichenor, B. A.; Palazzolo, M. A. Destruction of volatile organic compound via catalytic incineration. Environ. Prog. 1987, 6(3), 172-176.

    52. Völter, J.; Lietz, G.; Spindler, H.; Lieske, H. Role of metallic and oxidic platinum in the catalytic combustion of n-heptane. J. Catal. 1987, 104, 375-380.

    53. Ross, R. A., Sood, S. P. Catalytic oxidation of methyl mercaptan over cobalt molybdate. Ind. & Eng. Chem. Prod. Res. Dev. 1977, 16(2), 147-150.

    54. Chu, H.; Lee, W. T. The effect of sulfur poisoning of dimethyl disulfide on the catalytic incineration over a Pt/Al2O3 catalyst. Sci. Total Environ. 1998, 209, 217-224.

    55. Jennings, M. S.; Krohn, N. E.; Berry, R. S.; Palazzolo, M. A.; Parks, R. M.; Fidler, K. K. Catalytic Incineration for Control of Volatile Organic Compound Emissions, Noyes Publication: New Jersey, 1985; 14-18.

    56. Pope, D.; Walker, D. S.; Moss, R. L. Evaluation of platinum-honeycomb catalysts for the destructive oxidation of low concentration of odorous compounds in air. Atmos. Environ. 1978, 12, 1921-1927.

    57. Pope, D., Walker, D. S., Moss, R. L. Evaluation of cobalt oxide catalysts for the oxidation of low concentration of organic compounds in air. Atmos. Environ. 1976, 10, 951-956.

    58. Jones, A.; McNicol, B. Temperature-programmed reduction for solid materials characterization; Marcel Dekker, Inc.: New York, 1986.

    59. Ballikaya, M.; Atalay, S.; Alpay, H. E.; Atalay, F. S. Catalytic combustion of methylenchloride. Comb. Sci. and Technol. 1996, 120, 169-184.

    60. Chintawar, P. S.; Greene, H.L. Adsorption and catalyst destruction of trichloroethylene in hydrophobic zeolites. Appl. Catal. B: Environ. 1997, 13, 37-47.

    61. Windawi, H.; Zhang, Z. C. Catalytic destruction of halogenated air toxins and effect of admixture with VOCs. Catal. Today 1996, 30, 99-105.

    62. Jiang, X. Z.; Zhang, L. Q.; Wu, X. H.; Zheng, L. Catalytic decomposition of methylene Chloride by sulfated oxide catalysts. Appl. Catal. B: Environ. 1996, 9, 229-237.

    63. Greene, H. L.; Prakash, D.S.; Athota, K.V. Combined sorben/catalyst media for destruction of halogenated VOCs. Appl. Catal. B: Environ. 1996, 7, 213-224.

    64. Zaki, M. I.; Hasan, M. A.; Pasupulety, L.;Kumari, K. Bulk and surface characteristic of pure and alkalized Mn2O3: TG, IR, XRD, XPS, specific adsorption and redox catalytic studies. New J. Chem. 1998, 22, 875-882.

    65. Chu, H.; Lee, W. T.; Horng, K. H.; Tseng, T. K. The catalytic incineration of (CH3)2S and its mixture with CH3SH over a Pt/Al2O3 catalyst. J. Haz. Material 2001, B82, 43-53.

    66. Chu, H.; Horng, K. The kinetic of catalytic incineration of CH3SH and (CH3)2S over a Pt/Al2O3 catalyst. Sci. Total Environ. 1998, 209, 149-156.

    67. Chu, H.; Wu, L. W. The catalytic incineration of ethyl mercaptan over a MnO/Fe2O3 catalyst. J. Environ. Sci. and Health, part A 1998, A33(6), 1119-1148.

    68. Chu, H.; Chiou, Y. Y.; Horng, K. H.; Tseng, T. K. The Catalytic incineration of C2H5SH and its mixture with CH3SH over a Pt/Al2O3 catalyst. J. Environ. Eng. –ASCE 2001, 127(5), 438-442.

    69. Kułażyński, M.; van Ommen, J.G.; Trawczyński, J.; Walendziewski, J. Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts. Appl. Catal. B: Environ. 2002, 36, 239-247.

    70. Lou, J.C.; Lee, S.S. Destruction of trichloromethane with catalytic oxidation. Appl. Catal. B: Environ. 1997, 12, 111-123.

    71. Ortego Jr, J. D.; Richardson, J. T.; Twigg, M. V. Catalytic steam reforming of chlorocarbons: methyl chloride. Appl. Catal. B: Environ. 1997, 12, 339-355.

    72. Mariscal, R.; Peňa, M. A.Fierro, J. L. G. Promoter effects of dichloromethane on the oxidative coupling of methane over MnMgO catalysts. Appl. Catal. B: Environ. 1995, 131, 243-261.

    73. González-Velasco, J. R.; Aranzabal, A.,; Gutiérrez, J. I.; López-Fonseca, R.; Gutiérrez-Ortiz, M. A. Activity and product distribution of alumina supported platinum and paladiun catalysts in the gas-phase oxidative decomposition of chlorinated hydrocarbons. Appl. Catal. B: Environ. 1998, 19, 189-197.

    74. Mars, P.; van Krevelen, D.W. Oxidations carried out by means of vanadium oxide catalyst. Special Supplement to Chem. Eng. Sci. 1954, 3, 41-59.

    75. Chang, C.C.; Weng, H.S. Deep oxidation of toluene on perovskite catalyst. Ind. Eng. Chem. Res. 1993, 32, 2930-2933.

    76. Tseng, T.K.; Chu, H. The Catalytic incineration of styrene over an Mn2O3/Fe2O3 catalyst. J. Air & Waste Manage. Assoc. 2002, 52, 174-185.

    77. Tseng, T.K.; Chu, H. The kinetic of catalytic incineration of styrene over an MnO/Fe2O3 catalyst. Sci. Total Environ. 2001, 275, 83-93.

    78. Reid, R.C.; Prousnitz, J.M.; Poling, B.E. The properties of gases and liquids, 4th ed., McGraw-Hill, New York, 1987.

    79. Froment, G.F.; Bischoff, K.B. Chemical reactor analysis and design, 2nd ed., Wiley, New York, 1990, pp. 141-213.

    80. Weldon, J.; Senkan, S.M. Catalytic oxidation of CH3Cl by Cr2O3. Combust. Sci. Tech. 1986, 47, 229-237.

    81. Gangwal, S.K., Mullins, M.E., Spivey, J.J., Caffrey, P.R. Kinetics and selectivity of catalytic oxidation of n-hexane and benzene. Appl. Catal. 1988, 36, 231-247.

    82. Satterfield, C.N. Mass transfer in Heterogeneous catalysis. M.I.T., Cambridge, Mass., 1970, pp. 208-234.

    83. Batholomew, C. Catalyst deactivation. Chem. Eng. 1984, 99, 96-112.

    84. Chen, J., Heck, R.M., Farrauto, R.J. Deactivation, regeneration and poison resistant catalysts: commercial experience in stationary pollution abatement. Catal. Today, 1992, 11(4), 517-546.

    85. Heck, R.M., Farrauto, R.J. Catalytic air pollution control. Van Nostrand Reinhold, New York, 1995, pp. 63-70.

    86. Senkan, S.M. On the combustion of chlorinated hydrocarbon, II: Detailed chemical kinetic modeling of the intermediate zone of the two-stage trichloroethylene oxygen-nitrogen flame. Combust. Sci. Tech., 1984, 38, 191-214.

    87. Wu, Y. G. Detailed chemical kinetic mechanism of fuel-rich flame of CHCl3/CH4/O2/Ar. J Chi. Ins. Environ. Eng., 1999, 9, 229-240.

    88. Qun, M., Senkan, S.M. Chemical kinetic modeling of fuel-rich flame of CH2Cl2/Ch4/O2/Ar. Combust. Sci. Technol., 1994, 101, 103.

    下載圖示 校內:立即公開
    校外:2003-02-11公開
    QR CODE