簡易檢索 / 詳目顯示

研究生: 林玉錚
Lin, Yu-Jheng
論文名稱: 去氧羥四環素減少小鼠模型中增殖性玻璃體視網膜病變的嚴重性
Doxycycline reduces the severity of proliferative vitreoretinopathy in mice
指導教授: 陳舜華
Chen, Shun-hua
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 38
中文關鍵詞: 增殖性玻璃體視網膜病變上皮-間質細胞轉換去氧羥四環素基質金屬蛋白酶-9
外文關鍵詞: Proliferative vitreoretinopathy, epithelium-mesenchymal transition, doxycycline, matrix metalloproteinase-9
相關次數: 點閱:46下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 增殖性玻璃體視網膜病變(Proliferative vitreoretinopathy, PVR)是病患在接受裂孔性視網膜剝離的手術後常見的後遺症之一,會導致嚴重的視覺受損甚至是失明。在PVR的致病機制中,視網膜色素表皮細胞會透過上皮-間質細胞轉換過程(Epithelium-mesenchymal transition, EMT),從表皮細胞變成纖維母細胞樣細胞(Fibroblast-like cells),隨後遷移、生長在玻璃體中形成視網膜上膜(Epiretinal membrane, ERM)並伴隨著細胞因子介白素(Interleukin)和基質金屬蛋白酶(matrix metalloproteinase)的蛋白含量上升。ERM會因為自身的收縮能力導致細胞收縮並拉扯視網膜,造成牽引性的視網膜剝離。目前臨床上對於PVR的治療方式主要是透過手術將ERM去除,但是手術的成功率卻不盡理想;到目前為止也沒有一個適合的藥物能夠來治療或是預防PVR的發生。因此,我們需要去尋找一個好的藥物及治療方法來解決目前臨床上遇到的困境。在本篇研究中,我們選擇了臨床上的一種抗生素,測試它是否能夠降低PVR的發生。我們在細胞實驗中發現到此抗生素可以降低人類視網膜色素表皮細胞(ARPE-19)的遷移、生長、收縮,也可以減少EMT過程中相關調控因子與酵素的活性。在動物實驗中,我們發現到此抗生素能夠在PVR小鼠模型中降低PVR和發炎指數,並且減緩小鼠中PVR的相關病徵。在PVR誘導的小鼠玻璃體或視網膜中,我們發現到與PVR相關的酵素、蛋白、細胞因子的含量會明顯上升,而抗生素的治療可以阻斷此機制。總結上述實驗結果,我們發現了一種藥物具有作為治療PVR的潛力。

    Proliferative vitreoretinopathy (PVR) is a complication of surgery to correct rhegmatogenous retinal detachment and causes vision impairment and blindness in patients. During PVR development, retinal pigment epithelial (RPE) cells undergo epithelium-mesenchymal transition (EMT), migrate and proliferate in the vitreous, and form an epiretinal membrane with elevated levels of interleukin and matrix metalloproteinase (MMP). The membrane can attach to the retina and subsequently contract to cause retinal detachment and the failure of surgery. Until now, the major treatment for PVR is to remove the epiretinal membrane by surgery, but the success rate is unsatisfactory. The effective strategy to prevent PVR is also unavailable. Here, we test the potential of an antibiotic to treat PVR. In vitro results demonstrated that the antibiotic decreased the migration, proliferation, and contraction of the human RPE cell line, ARPE-19 and inhibited the activities of a regulator and enzyme, which are involved in the EMT process. In vivo results showed that antibiotic treatment decreased the disease score, inflammation, and pathology of PVR induced by ARPE-19 cells in mice. After PVR induction, enzyme expression can be positively regulated by a PVR associated pathway and cytokines, which were reversed by the antibiotic treatment, in the mouse retina and/or vitreous. Our results suggest that the antibiotic can be a new strategy to prevent PVR.

    摘要(I) Abstract(II) Acknowledgement(III) Contents(IV) Figure List(V) Introduction(1) Materials and methods(4) Results(8) Discussion1(13) References(17) Figures(21)

    1. The classification of retinal detachment with proliferative vitreoretinopathy. Ophthalmology. 90: 121-125 (1983).
    2. Pastor JC. Proliferative vitreoretinopathy: an overview. Surv Ophthalmol. 43: 3-18 (1998).
    3. Weller M, Wiedemann P, Heimann K. Proliferative vitreoretinopathy--is it anything more than wound healing at the wrong place? Int Ophthalmol. 14: 105-117 (1990).
    4. Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res. 51: 125-155 (2016).
    5. Kiang L, Ross BX, Yao J, Shanmugam S, Andrews CA, Hansen S, Besirli CG, Zacks DN, Abcouwer SF. Vitreous Cytokine Expression and a Murine Model Suggest a Key Role of Microglia in the Inflammatory Response to Retinal Detachment. Invest Ophthalmol Vis Sci. 59: 3767-3778 (2018).
    6. Zhang J, Zhou Q, Yuan G, Dong M, Shi W. Notch signaling regulates M2 type macrophage polarization during the development of proliferative vitreoretinopathy. Cell Immunol. 298: 77-82 (2015).
    7. Charteris DG, Hiscott P, Grierson I, Lightman SL. Proliferative vitreoretinopathy. Lymphocytes in epiretinal membranes. Ophthalmology. 99: 1364-1367 (1992).
    8. Kirchhof B, Sorgente N. Pathogenesis of proliferative vitreoretinopathy. Modulation of retinal pigment epithelial cell functions by vitreous and macrophages. Dev Ophthalmol. 16: 1-53 (1989).
    9. Casaroli-Marano RP, Pagan R, Vilaro S. Epithelial-mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 40: 2062-2072 (1999).
    10. Pastor JC, de la Rua ER, Martin F. Proliferative vitreoretinopathy: risk factors and pathobiology. Prog Retin Eye Res. 21: 127-144 (2002).
    11. Yang S, Li H, Li M, Wang F. Mechanisms of epithelial-mesenchymal transition in proliferative vitreoretinopathy. Discov Med. 20: 207-217 (2015).
    12. Khan MA, Brady CJ, Kaiser RS. Clinical management of proliferative vitreoretinopathy: an update. Retina. 35: 165-175 (2015).
    13. Limb GA, Little BC, Meager A, Ogilvie JA, Wolstencroft RA, Franks WA, Chignell AH, Dumonde DC. Cytokines in proliferative vitreoretinopathy. Eye (Lond). 5 ( Pt 6): 686-693 (1991).
    14. Symeonidis C, Papakonstantinou E, Androudi S, Rotsos T, Diza E, Brazitikos P, Karakiulakis G, Dimitrakos SA. Interleukin-6 and the matrix metalloproteinase response in the vitreous during proliferative vitreoretinopathy. Cytokine. 54: 212-217 (2011).
    15. Mitamura Y, Takeuchi S, Yamamoto S, Yamamoto T, Tsukahara I, Matsuda A, Tagawa Y, Mizue Y, Nishihira J. Monocyte chemotactic protein-1 levels in the vitreous of patients with proliferative vitreoretinopathy. Jpn J Ophthalmol. 46: 218-221 (2002).
    16. Abu El-Asrar AM, Struyf S, Kangave D, Geboes K, Van Damme J. Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Eur Cytokine Netw. 17: 155-165 (2006).
    17. Zandi S, Pfister IB, Traine PG, Tappeiner C, Despont A, Rieben R, Skowronska M, Garweg JG. Biomarkers for PVR in rhegmatogenous retinal detachment. PLoS One. 14: e0214674 (2019).
    18. Radisky ES, Radisky DC. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 15: 201-212 (2010).
    19. Symeonidis C, Papakonstantinou E, Souliou E, Karakiulakis G, Dimitrakos SA, Diza E. Correlation of matrix metalloproteinase levels with the grade of proliferative vitreoretinopathy in the subretinal fluid and vitreous during rhegmatogenous retinal detachment. Acta Ophthalmol. 89: 339-345 (2011).
    20. Townley WA, Cambrey AD, Khaw PT, Grobbelaar AO. Matrix metalloproteinase inhibition reduces contraction by dupuytren fibroblasts. J Hand Surg Am. 33: 1608-1616 (2008).
    21. Bond M, Chase AJ, Baker AH, Newby AC. Inhibition of transcription factor NF-kappaB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res. 50: 556-565 (2001).
    22. Mostafa Mtairag E, Chollet-Martin S, Oudghiri M, Laquay N, Jacob MP, Michel JB, Feldman LJ. Effects of interleukin-10 on monocyte/endothelial cell adhesion and MMP-9/TIMP-1 secretion. Cardiovasc Res. 49: 882-890 (2001).
    23. Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda). 28: 391-403 (2013).
    24. Messmer EM, von Lindenfels V, Garbe A, Kampik A. Matrix Metalloproteinase 9 Testing in Dry Eye Disease Using a Commercially Available Point-of-Care Immunoassay. Ophthalmology. 123: 2300-2308 (2016).
    25. Huang H. Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. Sensors (Basel). 18: (2018).
    26. Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2: (2017).
    27. Bond M, Baker AH, Newby AC. Nuclear factor kappaB activity is essential for matrix metalloproteinase-1 and -3 upregulation in rabbit dermal fibroblasts. Biochem Biophys Res Commun. 264: 561-567 (1999).
    28. Wang XC, Jobin C, Allen JB, Roberts WL, Jaffe GJ. Suppression of NF-kappaB-dependent proinflammatory gene expression in human RPE cells by a proteasome inhibitor. Invest Ophthalmol Vis Sci. 40: 477-486 (1999).
    29. Symeonidis C, Papakonstantinou E, Androudi S, Tsaousis KT, Tsinopoulos I, Brazitikos P, Karakiulakis G, Diza E, Dimitrakos SA. Interleukin-6 and matrix metalloproteinase expression in the subretinal fluid during proliferative vitreoretinopathy: correlation with extent, duration of RRD and PVR grade. Cytokine. 59: 184-190 (2012).
    30. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 1773: 1358-1375 (2007).
    31. Wiehler S, Cuvelier SL, Chakrabarti S, Patel KD. p38 MAP kinase regulates rapid matrix metalloproteinase-9 release from eosinophils. Biochem Biophys Res Commun. 315: 463-470 (2004).
    32. Yang CQ, Li W, Li SQ, Li J, Li YW, Kong SX, Liu RM, Wang SM, Lv WM. MCP-1 stimulates MMP-9 expression via ERK 1/2 and p38 MAPK signaling pathways in human aortic smooth muscle cells. Cell Physiol Biochem. 34: 266-276 (2014).
    33. Schiff L, Boles NC, Fernandes M, Nachmani B, Gentile R, Blenkinsop TA. P38 inhibition reverses TGFβ1 and TNFα-induced contraction in a model of proliferative vitreoretinopathy. Commun Biol. 2: 162 (2019).
    34. Smith GN, Jr., Mickler EA, Hasty KA, Brandt KD. Specificity of inhibition of matrix metalloproteinase activity by doxycycline: relationship to structure of the enzyme. Arthritis Rheum. 42: 1140-1146 (1999).
    35. Onoda T, Ono T, Dhar DK, Yamanoi A, Fujii T, Nagasue N. Doxycycline inhibits cell proliferation and invasive potential: combination therapy with cyclooxygenase-2 inhibitor in human colorectal cancer cells. J Lab Clin Med. 143: 207-216 (2004).
    36. Cho Y, Son HJ, Kim EM, Choi JH, Kim ST, Ji IJ, Choi DH, Joh TH, Kim YS, Hwang O. Doxycycline is neuroprotective against nigral dopaminergic degeneration by a dual mechanism involving MMP-3. Neurotox Res. 16: 361-371 (2009).
    37. Sun T, Zhao N, Ni CS, Zhao XL, Zhang WZ, Su X, Zhang DF, Gu Q, Sun BC. Doxycycline inhibits the adhesion and migration of melanoma cells by inhibiting the expression and phosphorylation of focal adhesion kinase (FAK). Cancer Lett. 285: 141-150 (2009).
    38. Castro MM, Tanus-Santos JE, Gerlach RF. Matrix metalloproteinases: targets for doxycycline to prevent the vascular alterations of hypertension. Pharmacol Res. 64: 567-572 (2011).
    39. Li H, Ezra DG, Burton MJ, Bailly M. Doxycycline prevents matrix remodeling and contraction by trichiasis-derived conjunctival fibroblasts. Invest Ophthalmol Vis Sci. 54: 4675-4682 (2013).
    40. Bostanci N, Akgul B, Tsakanika V, Allaker RP, Hughes FJ, McKay IJ. Effects of low-dose doxycycline on cytokine secretion in human monocytes stimulated with Aggregatibacter actinomycetemcomitans. Cytokine. 56: 656-661 (2011).
    41. Tang X, Wang X, Zhao YY, Curtis JM, Brindley DN. Doxycycline attenuates breast cancer related inflammation by decreasing plasma lysophosphatidate concentrations and inhibiting NF-kappaB activation. Mol Cancer. 16: 36 (2017).
    42. Saika S, Yamanaka O, Ikeda K, Kim-Mitsuyama S, Flanders KC, Yoo J, Roberts AB, Nishikawa-Ishida I, Ohnishi Y, Muragaki Y, Ooshima A. Inhibition of p38MAP kinase suppresses fibrotic reaction of retinal pigment epithelial cells. Lab Invest. 85: 838-850 (2005).
    43. Wang T, Liao Y, Sun Q, Tang H, Wang G, Zhao F, Jin Y. Upregulation of Matrix Metalloproteinase-9 in Primary Cultured Rat Astrocytes Induced by 2-Chloroethanol Via MAPK Signal Pathways. Front Cell Neurosci. 11: 218 (2017).
    44. Roybal CN, Velez G, Toral MA, Tsang SH, Bassuk AG, Mahajan VB. Personalized Proteomics in Proliferative Vitreoretinopathy Implicate Hematopoietic Cell Recruitment and mTOR as a Therapeutic Target. Am J Ophthalmol. 186: 152-163 (2018).
    45. Morishima Y, Ishii Y. Targeting Th2 cytokines in fibrotic diseases. Curr Opin Investig Drugs. 11: 1229-1238 (2010).
    46. Okunuki Y, Mukai R, Nakao T, Tabor SJ, Butovsky O, Dana R, Ksander BR, Connor KM. Retinal microglia initiate neuroinflammation in ocular autoimmunity. Proc Natl Acad Sci U S A. 116: 9989-9998 (2019).
    47. O'Koren EG, Yu C, Klingeborn M, Wong AYW, Prigge CL, Mathew R, Kalnitsky J, Msallam RA, Silvin A, Kay JN, Bowes Rickman C, Arshavsky VY, Ginhoux F, Merad M, Saban DR. Microglial Function Is Distinct in Different Anatomical Locations during Retinal Homeostasis and Degeneration. Immunity. 50: 723-737.e727 (2019).
    48. Santa-Cecília FV, Socias B, Ouidja MO, Sepulveda-Diaz JE, Acuña L, Silva RL, Michel PP, Del-Bel E, Cunha TM, Raisman-Vozari R. Doxycycline Suppresses Microglial Activation by Inhibiting the p38 MAPK and NF-kB Signaling Pathways. Neurotox Res. 29: 447-459 (2016).

    無法下載圖示 校內:2025-07-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE