簡易檢索 / 詳目顯示

研究生: 侯章祥
Hou, Zhang-Xiang
論文名稱: 臍帶電纜及洋流對潛航器運動之影響
指導教授: 方銘川
Fang, Ming-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 210
中文關鍵詞: 臍帶電纜洋流潛航器操縱性導數PMM試驗六度運動
相關次數: 點閱:68下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   臍帶電纜對於繫纜之潛航器是一個極為重要的環節,它為潛航器提供動力和傳輸訊息,但同時又給潛航器的使用帶來麻煩。現今探討潛航器運動模式之研究當中,大多忽略臍帶電纜對其所造成之影響,其理由均著眼於潛航器於深海航行時所受到之臍帶電纜影響較巨大,也因此即可簡化系統運算過程並避免觸及繁雜之問題,這是不合理的。惟潛航器於深海下航行時仍會受到電纜及洋流力量之影響,故本文即深入探討潛航器受電纜及洋流力量影響後之運動模式。

      基本上潛航器之動態模式為高度非線性之耦合運動,欲準確描述此一系統之動態行為實係相當困難且複雜。本文則使用本系所擁有之TRIGGERFISH ROV為研究對象,並經由PMM試驗完成操縱性導數量測後,更進一步建構潛航器之運動電腦模擬程式,使用(Fourth-Order Runge-Kutta methods、Hooke & Jeeves methods)等數值理論並配合六自由度運動之耦合關係來計算臍帶電纜及洋流對潛航器之影響力量。最後,再使用座標轉換之數學模式準確繪出潛航器之運動軌跡,並藉由直行、上浮、下潛、純側移及轉向等操控方式,分別探討潛航器在靜水、洋流環境下及受到臍帶電纜力量影響後之運動性能分析。

    none

    摘要 I 致謝 II 目錄 IV 表目錄 IX 圖目錄 IX 符號說明 XVII 第一章 緒論 1 1-1 引言 1 1-2 研究動機與目的 2 1-3 文獻回顧 3 1-4 論文架構 5 第二章 潛航器(ROV)動態模式 6 2-1 座標系統 7 2-2 剛體動態方程式 8 2-3 剛體動態(Rigid-Body Dynamics) 8 2-4 潛航器(ROV)所受之外力 14 2-5 慣性矩陣 15 2-6 科氏力與向心力矩陣 16 2-7 流體動力阻尼矩陣 17 2-8 重力與浮力造成的恢復力及力矩 18 2-9 臍帶電纜造成的力及力矩 20 2-9.1 基本假設 21 2-9.2 座標 21 2-9.3 方程式 22 2-9.4 流體力 24 2-9.5 臍帶電纜之放長模式 28 2-10 推進器造成的力及力矩 31 2-11 洋流(Ocean Currents) 34 第三章 平面運動機構(PMM)試驗量測分析 35 3-1 PMM系統架構與功能 35 3-2 PMM軟、硬體系統 35 3-3 流體動力係數計算流程 37 3-4 PMM試驗種類介紹 39 3-5 實驗儀器設備與ROV模型 43 3-5.1 水槽 43 3-5.2 潛航器(ROV)模型 43 3-5.3 拖航台車 45 3-5.4 三分力矩 46 3-5.5 注意事項 46 3-6 PMM量測實驗 48 3-6.1 ROV+支柱量測的四種模式 48 3-6.2 支柱量測的四種模式 52 第四章 潛航器(ROV)流體動力係數分析與探討 55 4-1 PMM測試運動與流體動力係數之關係 55 4-2 動態分析(Analysis of Dynamic Test) 56 4-2.1 運動方程式(Equations of Motion) 56 4-2.2 數學模式(Mathmatical Model) 57 4-3 流體動力係數(hydrodynamic derivatives) 58 4-3.1 平擺模式 60 4-3.2 縱搖模式 67 4-3.3 橫搖模式 75 第五章 潛航器(ROV)動態數值模擬與計算流程 82 5-1 矩陣各項係數的設定 82 5-1.1 剛體慣性矩陣 82 5-1.2 附加質量矩陣 84 5-1.3 剛體科氏力與向心力矩陣 84 5-1.4 附加質量科氏力與向心力矩陣 85 5-1.5 流體動力阻尼矩陣 86 5-1.6 重力與浮力造成的恢復力及力矩 87 5-1.7 潛航器(ROV)六自由度運動姿態的模擬 88 5-2 數值方法介紹 88 5-3 計算用臍帶電纜之等份數目探討 90 5-4 計算流程介紹 91 第六章 結果分析與討論 94 6-1 ROV在無洋流下(探討有、無臍帶電纜的影響) 95 6-1.1 基本假設 95 6-1.2 直線航行運動 95 6-1.3 上浮運動 97 6-1.4 下潛運動 98 6-1.5 純側移運動 100 6-1.6 轉向運動(10rps,2rps) 101 6-1.7 轉向運動(10rps,10rps) 102 6-2 ROV在均勻洋流下(探討有、無臍帶電纜的影響) 104 6-2.1 基本假設 104 6-2.2 直線航行運動 104 6-2.3 上浮運動 106 6-2.4 下潛運動 108 6-2.5 純側移運動 109 6-2.6 轉向運動(10rps,2rps) 111 6-2.7 轉向運動(10rps,10rps) 112 第七章 結論與未來展望 174 參考文獻 176 附錄A. Runge-Kutta 四階數值方法 180 附錄B. 潛航器(ROV)之六度運動方程式 181 附錄C. PMM試驗量測程序 183 附錄D. PMM試驗分析程序(Fourier Analysis) 198 附錄E. Hooke & Jeeves局部搜索方法 208 自述 210

    【1】Andrew Heron, Alec Duncan and Brendon Anderson,“Hydrodynamic Testing of
    Underwater Vehicles at The Australian Maritime Engineering Co-Operative
    Research Centre,”IEEE,2000.
    【2】Authony J. Healey, and David Lienard, “Multivariable Sliding-Mode
    Control for Autonomous Diving and Steering of Unmanned Underwater
    Vehicles,” IEEE Journal of Oceanic Eng., Vol. 18,1993.
    【3】B. Buckham, and M. Nahon, “DYNAMICS SIMULATION OF LOW
    TENSION TETHERS,” Dept. of Mechanical Eng.,Space and Subsea
    Robotics Laboratory, University of Victoria, B.C. IEEE Journal of
    Oceanic Eng.,1993.
    【4】B. Buckham, M. Nahon, and G. Cote “Validation of a Finite Element Model
    for Slack ROV Tethers,” IEEE J. Ocean Eng., pp. 1129-1136, 2000.
    【5】D. Liddle, “TROJAN: Remotely Operated Vehicle,” IEEE Journal of Ocean
    Eng., Vol. OE-11, No. 3, pp. 364-372, July 1986.
    【6】Deam W., and Given D., “ROV Technology Trends and Forecast,” OCEANS,
    Vol. 15, pp. 573-578,1983.
    【7】Douglas E. Humphreys, “Dynamics and Hydrodynamics of Ocean
    Vehicles, ”IEEE,1981.
    【8】Eda, H. and Crane, C. L., “Steering Characteristics of Ships in Calm
    Water and Waves,”Trans. SNAME, Vol. 73,1965.
    【9】Edward V. Lewis, “Motions in Wave and Controllability,” Principles of
    Naval Architecture Second Revision, pp. 206-207,1989.
    【10】Frederick Driscoll, Meyer Nahon and Rolf Lueck, “Experimental
    Measurement of the Coupled Motions of a ship and a Deep Sea
    Remotely Operated Vehicle System,” IEEE,1996.
    【11】Fujino, M.,“An Introduction to Ship Manoeuvrability-----Safety of
    Navigation and Prediction of Manoeuvering Performance,” Lectures
    held at National Taiwan University, Taipei,1986.
    【12】H. H. Thatcher, “RCV-225G,“Design and Production of a First Unit
    Wellhead Work System,” IEEE J. Ocean Eng., Vol. OE-11, No.3, pp.
    349-357, July 1986.
    【13】Hover F. S., and Newman J. B., “ROV Deployment Design
    for Performance and Survivability,” OCEANS'94 Proc., pp.
    II/477-II/482 Vol. 2, Sept 1994.
    【14】Ing. Claudio Pedrazzi, “Dog On Lead Minehunting underwater cable
    simulation,” 12th European ADAMS user’s conference,18&19
    November 1997,Marburg
    【15】Kawano, K.,Murata, Y. and others, “Some Model Experiments and
    Ship Correlation in Respect to Manoeuvrability,”Jour. Soc. Nav.
    Archit. Japan, Vol. 113,1963.
    【16】Kihun Kim, Jooonyong Kim, Hang S. Choi, Kyu-Yeul Lee, and
    Woojae Seong, “Estimation of Hydrodynamic Coefficients of a
    Test-bed AUV-SNUUV I by Motion Test, ”IEEE,2002.
    【17】K.R. Goheen, and E.R. Jefferys, “The Application of Alternative
    Modelling Techniques to ROV Dynamics,” IEEE,1990.
    【18】M. Nomoto, and M. Hattori, “A Deep ROV DOPHIN 3K: Designed
    Performance Analysis,” IEEE Journal of Ocean Eng., Vol. OE-11, No.
    3, pp. 373-391, July 1986.
    【19】Mikelis, N. E. , “A Procedure for the Prediction of Ship Manoeuvering
    Response for Initial Design,”International Conference on Computer
    Applications in the Automation of Shipyard Operation and Ship
    Design,1985.
    【20】R. Cristi, F. A. Papoulias, and A. J. Healey, “Adaptive Sliding Mode
    Control of Autonomous Underwater Vehicles in the Dive Plane,”
    IEEE Journal of Ocean Eng., Vol. 15, No. 3, pp. 152-160, July 1990.
    【21】R. J. Richards, and D. P. Stoten, “Depth Control of A Submersible
    Vehicle,” Int. Shipbuilding Progress, Vol. 28, pp. 30-39, Feb. 1981.
    【22】Singh H., Yoerger D., and Bradley A., “Issues in AUV
    Design and Deployment for Oceanographic Research,”
    Robotics and Automation, 1997 Proc., 1997 IEEE
    International Conference, pp. 1857-1862 Vol. 3, April 1997.
    【23】Stewart L. L., and Auster P. J., “Low Cost ROV's for Science,”
    OCEANS'89 Proc., Vol. 3, pp. 816-819, 1989.
    【24】T. I. Fossen, Guidance and Control of Ocean Vehicles, John Wiley,
    1994.
    【25】T. W. McLain, and S. M. Rock, “Experimental Measurement of ROV
    Tether Tension,”In Proceedings of ROV 92,San Diego,CA,June,1992
    【26】Y. Tsusaka, H. Ishidera, and Y. Itoh, “MURS-300 MK II: A Remote
    Inspection System for Underwater Facilities of Hydraulic Power
    Plants,” IEEE Journal of Ocean Eng., Vol. OE-11, No. 3, pp. 358-363,
    July 1986.
    【27】Yang Sun,and John W.Leonard, “DYNAMICS OF OCEAN CABLES
    WITH LOCAL LOW-TENSION REGIONS,” IEEE Journal of Ocean
    Eng., Vol. 25, No. 6, pp. 443-463, 1998.
    【28】Yasuhisa Hashizume, “Planar Motion Mechanism,” West Japan Fluid
    Engineering Laboratory Co., Ltd.,2004.
    【29】Yongkuan L., “AUV's Trends over The World in The Future Decade,”
    Autonomous Underwater Vehicle Technology, AUV'92 Proc., pp.
    116-127, 1992.
    【30】Z. Feng ,R. Allen, “Evaluation of the effects of the communication
    cable on the dynamics of an underwater flight vehicle”, Ocean
    Engineering 31 , pp. 1019–1035,2004
    【31】朱繼懋,“潛水器設計,”上海交通大學出版社, July 1991

    下載圖示 校內:立即公開
    校外:2005-06-29公開
    QR CODE