簡易檢索 / 詳目顯示

研究生: 左瑞塔
Zohra, Rida
論文名稱: 建立F1青花菜雙單倍體植株組織培養技術
Establishment of double haploid F1 plants in broccoli
指導教授: 李瑞花
Lee, Ruey Hua
共同指導: 謝羅倫
Roland Schafleitner
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物與微生物科學研究所
Institute of Tropical Plant Sciences and Microbiology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 62
中文關鍵詞: 花葯培養青花菜發育時期雙單倍體基因型培養基成分花粉細胞培養DNA倍體鑑定SSR分子標誌
外文關鍵詞: anther culture, broccoli, developmental stage, doubled haploid, genotype, medium composition, microspore culture, DNA ploidy determination, SSR marker
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究最主要目的是利用花粉細胞或花藥建立F1青花菜雙單倍體植株組織培養技術,五種F1青花菜AVBR1101、 B45、KY、AVBR1102和AVBR1103為試驗品種,只有這些植株種植在生長箱設在20/15°C日夜溫16小時光照,將三種不同時期的花粉細胞(單核、雙核及三核)進行花粉細胞培養及兩種不同的大小(2-3 mm 和 3-4 mm)的花苞進行花藥培養, 配子體細胞建立雙單倍體植株主要利用全濃度NLN-13培養基分離花粉細胞再用半濃度NLN-13培養,其中也只有B45和AVBR1102有成功誘導配子體體胚。品種、花苞大小、培養基質(Murashige & Skoog和B5 Gamborg培養基)及賀爾蒙種類(2,4-dichlorophenoxyacetic acid 和 1-naphthaleneacetic acid)的不同處理組合對花藥癒傷組織誘導有明顯的影響,例如AVBR1101、 B45和KY成功從癒傷組織得到植株,而且用2-3 mm花苞和B5培養基用AVBR1101(54%)和KY(62.5%)兩個品種比起其他品種癒傷組織誘導率最高。在培養基加活性碳只對AVBR1101有正面影響癒傷組織誘導率,對其他品種甚至有負面影響。事先花苞的4C冷處理也只對AVBR1101有促進效果。本研究也利用SSR分子標誌、流式細胞儀、計算染色體及氣孔保衛細胞內葉綠體數目及氣孔數目及大小及表觀特徵等技術鑑定雙單倍體植株,目前利用SSR分子標誌及表觀特徵成功鑑定本研究所建立的雙單倍體植株。

    The purpose of this research is to compare microspore and anther culture based doubled haploid (DH) development protocols with the aim for routine production of DH F1 broccoli (Brassica oleracea L. var. italica) plants. Five broccoli F1 hybrids AVBR1101, B45, KY, AVBR1102, and AVBR1103 were used to test DH protocols. Hybrid plants were grown in growth chambers with a 16/8 h light/dark cycle at 20/15°C, respectively. Flower buds containing three microspore developmental stages (uninucleate, binucleate and trinucleate) and two flower bud sizes (2-3 mm, 3-4 mm) were used for microspore and anther cultures, respectively. For microspore culture two kinds of growth media, full and half strength NLN-13 medium, were used. In total ten plants were successfully regenerated from B45 and AVBR1102. For anther culture, in addition to variation in bud size and growth media strength, various combinations of the hormones 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (NAA) were tested. In total seven plants were regenerated from anther culture from the hybrids AVBR1101, B45 and KY. Callus induction was highest when anthers were isolated from buds of 2-3mm and were grown on B5 basal medium. Hybrids AVBR1101 (54%) and KY (62.5%) explants produced callus with highest frequency. Adding active charcoal to the growth medium showed no effect on callus induction in AVBR1101, and had an inhibitory effect in B45 and KY. The effect of precold treatment varied with the genotype. Precold treatment increased the callus induction in AVBR1101, decreased in KY, and had no effect in B45. DNA ploidy determination of regenerated plants was first done by genotyping with SSR markers showing heterozygote genotype in hybrids and homozygote genotype in DH plants. Other methods such as flow cytometry, chromosome counting, and phenotyping by measuring stomata number and size, and seed pods production were also performed for DH validation. SSR marker genotypes indicated that all microspore regenerated plants were haploid, while all plants regenerated from anther culture were in fact diploid. The flow cytometry experiment failed to confirm these results, as the cuticular tissues interfered with the measurements. Stomata and seed pod formation are indications that the ploidy of microspore regenerants duplicated spontaneously.

    Category 1. Introduction 1.1. Brassica oleracea var italic………………………………………………………...……01 1.2. Economic importance of Broccoli ………………………………………….……..…...01 1.3. Haploid Induction – Literature Review…………………………………………...….03 1.3.1. The male gametophyte – the most common source tissue for producing haploid plants ……………………………………………………………………………………..…......04 1.3.2. Regenerating plants via gametophytic embryogenesis…………………...……...05 1.3.3. Double haploid plants………………………………………………………...……06 1.3.4 Applications of doubled haploid technique………………………………...…......07 1.3.5 Ploidy identification …………………………………………………………..……08 1.4. Research Aim ……………………………………………………………………….….09 2. Materials and Methods …………………………………………………………………….10 2.1. Plant material ………………………………………………………………………….10 2.2. Growing Broccoli plants ………………………………………………………………10 2.3. Growth chamber conditions…………………………………………………………. 10 2.4. Insect and pest control ………………………………………………………………...10 2.5. Bud harvesting ………………………………………………………………………...10 2.6. Flower buds collection and staining ………………………………………………….11 2.7. Microspore culture ……………………………………………………………………11 2.7.1. Media composition ………………………………………………………………..11 2.7.2. Flower sterilization and microspore isolation ………………………………….11 2.7.3. Crushing ………………………………………………………………………….11 2.7.4. Filtration ………………………………………………………………………….11 2.7.5. Centrifugation ……………………………………………………………………12 2.7.6. Pollen yield calculation …………………………………………………………..12 2.7.7. Incubation ………………………………………………………………………...12 2.7.8. Embryo germination and transferring to soil ………………………………….12 2.8. Anther culture …………………………………………………………………………13 2.8.1. Medium Composition ……………………………………………………………….13 2.8.2. Sterilization and anther isolation …………………………………………………..13 2.8.3. Culturing and incubation of isolated anthers……………………………………....13 2.8.4. Active charcoal and cold treatment ………………………………………………..14 2.9. Plant regeneration from callus and transferring to soil …………………………….14 2.10. Statistical data analysis of callus induction ………………………………………...14 2.11. Ploidy determination of regenerated plants ………………………………………..14 2.11.1. Flow cytometry ………………………………………………………………….14 2.11.2. Chromosome counting ………………………………………………………….15 2.11.3. Stomata counting ……………………………………………………………….15 2.11.4. Molecular marker based characterization of hybrids and putative haploid plants…………………………………………………………………………………………….15 2.11.4.1. Plant materials ……………………………………………………………...15 2.11.4.2. DNA extraction ……………………………………………………………..16 2.11.4.3. PCR amplification and gel electrophoresis…..………………………..16 3. Results ……………………………………………………………………………………....17 3.1. Correlation of flower bud length to microspore development ………………………….17 3.2. Haploid induction via microspore embryogenesis ……………………………………...17 3.3. Ploidy identification of microspore derived regenerants …………………………….....17 3.3.1. Molecular marker based characterization ……………………………………….....17 3.3.2. DNA flow cytometry …………………………………………………………….....18 3.3.3. Chromosome counting ……………………………………………………………..18 3.3.4. Stomata counting and size measurements ………………………………………….18 3.3.5. Fertility of microspore regenerants ………………………………………………...19 3.4. Haploid induction via anther culture ……………………………………………………19 3.4.1. Callus production from anther culture …………………………………………….19 3.4.1.1. Comparison of callus induction from anthers harvested from of 2-3 mm sized buds on different basal media ……………………………………………………………….……….19 3.4.1.2. Comparison of callus induction from anthers harvested from of 3-4 mm sized buds on different basal media …………………………………………………………….…………..19 3.4.1.3. Comparison of callus induction from anthers harvested from differently sized buds on optimum basal medium ……………………………………………………………………..20 3.4.1.4. Comparison of callus induction between different genotypes with their optimum basal medium and optimum bud size …………………………………………………………..20 3.4.1.5. Comparison of callus induction with and without active charcoal treatment …20 3.4.1.6. Comparison of callus induction with and without pre-cold treatment………… 21 3.5. Plantlet production from anther culture ………………………………………………..21 3.6. Ploidy identification of anther cultured regenerated plants …………………………....21 3.6.1. Molecular marker based characterization………………………………………… 21 4. Discussion …………………………………………………………………………………...23 Conclusion ……………………………………………………………………………………...28 References……………………………………………………………………………………...29

    Abdel-Wahhab, M. A., & Aly, S. E. (2003). Antioxidants and radical scavenging properties of vegetable extracts in rats fed aflatoxin-contaminated diet. Journal of Agricultural and Food Chemistry, 51(8), 2409-2414.
    Arnison, P. G., Donaldson, P., Jackson, A., Semple, C., & Keller, W. (1990). Genotype-specific response of cultured broccoli (Brassica oleracea var. italica) anthers to cytokinins. Plant Cell, Tissue and Organ Culture, 20(3), 217-222
    Asif, M., (2013). Progress and Opportunities of Doubled Haploid Production (No. QK981. A85). Cham: Springer.
    Baenziger, P. S., Kudirka, D. T., Schaeffer, G. W., & Lazar, M. D. (1984). The significance of doubled haploid variation. In Gene Manipulation in Plant Improvement (pp. 385-414). Springer, Boston, MA.
    Baenziger, P. S., (1996). Reflections on doubled haploids in plant breeding. In In vitro Haploid Production in Higher Plants (pp. 35-48). Springer, Dordrecht.
    Bal, U., & Abak, K. (2007). Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review. Euphytica, 158(1-2), 1-9.
    Bedinger, P., (1992). The remarkable biology of pollen. The Plant Cell, 4(8), 879.
    Bhojwani, S. S., & Dantu, P. K. (2013). Plant Tissue Culture: An Introductory Text (pp. 39-43). India: Springer.
    Bhowmik, P., Dirpaul, J., Polowick, P., & Ferrie, A. M. (2011). A high throughput Brassica napus microspore culture system: influence of percoll gradient separation and bud selection on embryogenesis. Plant Cell, Tissue and Organ Culture, 106(2), 359-362.
    Bishnoi, U., Jain, R. K., Rohilla, J. S., Chowdhury, V. K., Gupta, K. R., & Chowdhury, J. B. (2000). Anther culture of recalcitrant indica× Basmati rice hybrids. Euphytica, 114(2), 93-101.
    Blakeslee, A. F., Belling, J., Farnham, M. E., & Bergner, A. D. (1922). A haploid mutant in the Jimson weed," Datura stramonium". Science, 55(1433), 646-647.
    Boswell, V. R., (1949). Our vegetable travelers. National Geographic, 96(2), 145-218.
    BROWN, M. S., (1943). Haploid plants in sorghum. Journal of Heredity, 34(6), 163-166.
    Burnett, L., Yarrow, S., & Huang, B. (1992). Embryogenesis and plant regeneration from isolated microspores of Brassica rapa L. ssp. oleifera. Plant Cell Reports, 11(4), 215-218.
    Cartea, M. E., Lema, M., Francisco, M., & Velasco, P. (2011). Basic information on vegetable Brassica crops. Genetics, Genomics and Breeding of Vegetable Brassicas, 1-33.
    Chen, W. H., Tang, C. Y., Lin, T. Y., Weng, Y. C., & Kao, Y. L. (2011). Changes in the endopolyploidy pattern of different tissues in diploid and tetraploid Phalaenopsis aphrodite subsp. formosana (Orchidaceae). Plant Science, 181(1), 31-38.
    Chepeleva, K. V., & Shmeleva, Z. N. (2020, January). Strategic prospects of the Krasnoyarsk territory agro-industrial complex in the market of oilseeds and vegetable oils. In IOP Conference Series: Earth and Environmental Science (Vol. 421, No. 2, p. 022033). IOP Publishing.
    Chuong, P. V., Deslauriers, C., Kott, L. S., & Beversdorf, W. D. (1988). Effects of donor genotype and bud sampling on microspore culture of Brassica napus. Canadian Journal of Botany, 66(8), 1653-1657.
    Custers, J. B. M., (2003). Microspore culture in rapeseed (Brassica napus L.). In Doubled Haploid Production in Crop Plants (pp. 185-193). Springer, Dordrecht.
    Custers, J. B., Cordewener, J. H., Nöllen, Y., Dons, H. J., & Campagne, M. M. V. L. (1994). Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Reports, 13(5), 267-271.
    Da Silva Dias, J. C., (2003). Protocol for broccoli microspore culture. In Doubled Haploid Production in Crop Plants (pp. 195-204). Springer, Dordrecht.
    Dhooghe, E., Van Laere, K., Eeckhaut, T., Leus, L., & Van Huylenbroeck, J. (2011). Mitotic chromosome doubling of plant tissues in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 104(3), 359-373.
    Dinkova-Kostova, A. T., Jenkins, S. N., Fahey, J. W., Ye, L., Wehage, S. L., Liby, K. T., et al., (2006). Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Letters, 240(2), 243-252.
    do Nascimento Nunes, M. C., (2009). Color atlas of postharvest quality of fruits and vegetables. HortScience Horts, 44(6), 1801a-1801 John Wiley & Sons.
    Duijs, J. G., Voorrips, R. E., Visser, D. L., & Custers, J. B. M. (1992). Microspore culture is successful in most crop types of Brassica oleracea L. Euphytica, 60(1), 45-55.
    Eder, J., & Chalyk, S. (2002). In vivo haploid induction in maize. Theoretical and Applied Genetics, 104(4), 703-708.
    Fahey, J. W., Zhang, Y., & Talalay, P. (1997). Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences, 94(19), 10367-10372.
    FAOSTAT., 2018. Food and Agricultural Organization of United Nations: Economic And Social Department: The Statistical Division. http://faostat.fao.org/site/567
    Faruq, G., Shamsuddin, F., Jenifer, A., Jusoh, S. H., Nezhadahmadi, A., & Khalid, N. (2014). Optimization of media and cold pre-treatment for anther culture using japonica/indica and indica/indica hybrids and their callus induction comparisons in different rice crosses. Indian Journal of Science and Technology, 7(11), 1-10.
    Ferrie, A., (2003). Microspore culture of Brassica species. In Doubled Haploid Production in Crop Plants (pp. 205-215). Springer, Dordrecht.
    Ferrie, A. M. R., & Caswell, K. L. (2011). Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell, Tissue and Organ Culture, 104(3), 301-309.
    Ferrie, A. M. R., & Keller, W. A. (1995). Microspore culture for haploid plant production. In Plant Cell, Tissue and Organ Culture (pp. 155-164). Springer, Berlin, Heidelberg.
    Finley, J. W., (2003). Reduction of cancer risk by consumption of selenium-enriched plants: enrichment of broccoli with selenium increases the anticarcinogenic properties of broccoli. Journal of Medicinal Food, 6(1), 19-26.
    Finley, J. W., Ip, C., Lisk, D. J., Davis, C. D., Hintze, K. J., & Whanger, P. D. (2001). Cancer-protective properties of high-selenium broccoli. Journal of Agricultural and Food Chemistry, 49(5), 2679-2683.
    Fletcher, R., Coventry, J., & Kott, L. S. (1998). Doubled haploid technology for spring and winter Brassica napus. Technical Bulletin, OAC Publication, 1-42.
    Forster, B. P., Heberle-Bors, E., Kasha, K. J., & Touraev, A. (2007). The resurgence of haploids in higher plants. Trends in Plant Science, 12(8), 368-375.
    Francis, D., (2007). The plant cell cycle− 15 years on. New Phytologist, 174(2), 261-278.
    Gahan, P. B., (2007). Totipotency and the cell cycle. In Protocols for Micropropagation of Woody Trees and Fruits (pp. 3-14). Springer, Dordrecht.
    Gaillard, A., Vergne, P., & Beckert, M. (1991). Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Reports, 10(2), 55-58.
    Gaj, M., (1998). Estimation of parthenogenesis frequency in genotypes of Hordeum vulgare (L.) by auxin test. Journal of Applied Genetics, 39, 98.
    Gaj, M. D., (2001). Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant cell, Tissue and Organ Culture, 64(1), 39-46.
    Gaj, M. D., (2004). Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regulation, 43(1), 27-47.
    Gamborg, O. L., Miller, R., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151-158.
    Gil-Humanes, J., & Barro, F. (2009). Production of doubled haploids in Brassica. In Advances in Haploid Production in Higher Plants (pp. 65-73). Springer, Dordrecht.
    Gland, A., (1981). Doubling chromosomes in interspecific hybrids by colchicine treatment. Eucarpia Cruciferae Newsletter, 6, 20-22.
    Gray, A. R., (1982). Taxonomy and evolution of broccoli (Brassica oleracea var. italica). Economic Botany, 36(4), 397-410.
    Guha, S., & Maheshwari, S. C. (1964). In vitro production of embryos from anthers of Datura. Nature, 204(4957), 497-497.
    Guo, Y. D., & Pulli, S. (2000). An efficient androgenic embryogenesis and plant regeneration method through isolated microspore culture in timothy (Phleum pratense L.). Plant Cell Reports, 19(8), 761-767.
    Guo, Y. D., & Pulli, S. (2000). Isolated microspore culture and plant regeneration in rye (Secale cereale L.). Plant Cell Reports, 19(9), 875-880.
    Gupta, P. K., (1999). Haploidy in higher plants. Cytogenetics. Rastogi Publication, Shivaji Road Meerut, India, 116-119.
    Hagberg, A. R. N. E., & Hagberg, G. U. N. B. O. R. G. (1980). High frequency of spontaneous haploids in the progeny of an induced mutation in barley. Hereditas, Sweden, 93(2), 341-343.
    Hansen, M., (2003). Protocol for microspore culture in Brassica. In Doubled Haploid Production in Crop Plants (pp. 217-222). Springer, Dordrecht.
    Hansen, M., & Svinnset, K. (1993). Microspore culture of swede (Brassica napus ssp. rapifera) and the effects of fresh and conditioned media. Plant cell reports, 12(9), 496-500.
    Hansen, N. J. P., & Andersen, S. B. (1998). In vitro chromosome doubling with colchicine during microspore culture in wheat (Triticum aestivum L.). Euphytica, 102(1), 101-108.
    Hodnett, G. L., (2007). The effect of the semigamy (se) mutant on the early development of cotton (Gossypium barbadense L.) (Doctoral dissertation, Texas A&M University). 116 pp.
    Hoffmann, F., (1980). Pflanzliche Zellkulturtechniken als Züchtungsschritt am Beispiel Raps. Naturwissenschaften, 67(6), 301-306.
    Hoffmann, F., Thomas, E., & Wenzel, G. (1982). Anther culture as a breeding tool in rape. Theoretical and Applied Genetics, 61(3), 225-232.
    Hollman, P. H., & Katan, M. B. (1999). Dietary flavonoids: intake, health effects and bioavailability. Food and Chemical Toxicology, 37(9-10), 937-942.
    Immonen, S., & Anttila, H. (1996). Success in anther culture of rye. Vortraege Fuer Pflanzenzuechtung 35:237–244 (Germany).
    Inagaki, M. N., (2003). Doubled haploid production in wheat through wide hybridization. In Doubled Haploid Production in Crop Plants (pp. 53-58). Springer, Dordrecht.
    Iniguez-Luy, F. L., Voort, A. V., & Osborn, T. C. (2008). Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theoretical and Applied Genetics, 117(6), 977-985.
    Jones, A. M., & Petolino, J. F. (1988). Effects of support medium on embryo and plant production from cultured anthers of soft-red winter wheat (Triticum aestivum L.). Plant Cell, Tissue and Organ Culture, 12(3), 253-261.
    Kahrizi, D., & Mohammadi, R. (2009). Study of androgenesis and spontaneous chromosome doubling in barley (Hordeum vulgare L.) genotypes using isolated microspore culture. Acta Agronomica Hungarica, 57(2), 155-164.
    Karp, A., Risiott, R., Jones, M. G., & Bright, S. W. (1984). Chromosome doubling in monohaploid and dihaploid potatoes by regeneration from cultured leaf explants. Plant Cell, Tissue and Organ Culture, 3(4), 363-373.
    Kasha, K. J., & Kao, K. N. (1970). High frequency haploid production in barley (Hordeum vulgare L.). Nature, 225(5235), 874-876.
    Kasha, K. J., Simion, E., Oro, R., Yao, Q. A., Hu, T. C., & Carlson, A. R. (2002). An improved in vitro technique for isolated microspore culture of barley. In Mutations, In Vitro and Molecular Techniques for Environmentally Sustainable Crop Improvement (pp. 45-54). Springer, Dordrecht.
    Kasha, K. J., Simion, E., Miner, M., Letarte, J., & Hu, T. C. (2003). Haploid wheat isolated microspore culture protocol. In Doubled Haploid Production in Crop Plants (pp. 77-81). Springer, Dordrecht.
    Keller, W. A., & Armstrong, K. C. (1983). Production of haploids via anther culture in Brassica oleracea var. italica. Euphytica, 32(1), 151-159.
    Keller, W. A., Rajhathy, T., & Lacapra, J. (1975). In vitro production of plants from pollen in Brassica campestris. Canadian Journal of Genetics and Cytology, 17(4), 655-666.
    Kiong, A. L. P., Huan, H. H., & Hussein, S. (2007). Callus induction from leaf explants of Melaleuca alternifolia. International Journal of Agricultural Research, 2(3), 227-37.
    Kleiber, D., Prigge, V., Melchinger, A. E., Burkard, F., San Vicente, F., Palomino, G., & Gordillo, G. A., (2012). Haploid fertility in temperate and tropical maize germplasm. Crop Science, 52(2), 623-630.
    Kott, L. S., Polsoni, L., Ellis, B., & Beversdorf, W. D. (1988). Autotoxicity in isolated microspore cultures of Brassica napus. Canadian Journal of Botany, 66(8), 1665-1670.
    Lanaud, C., (1988). Origin of haploids and semigamy in Theobroma cacao L. Euphytica, 38(3), 221-228.
    Lee, J. J., Shin, H. D., Lee, Y. M., Kim, A. R., & Lee, M. Y. (2009). Effect of broccoli sprouts on cholesterol-lowering and anti-obesity effects in rats fed high fat diet. Journal of the Korean Society of Food Science and Nutrition, 38(3), 309-318.
    Lichter, R., (1981). Anther culture of Brassica napus in a liquid culture medium. Zeitschrift für Pflanzenphysiologie, 103(3), 229-237.
    Lichter, R., (1982). Induction of haploid plants from isolated pollen of Brassica napus. Zeitschrift für Pflanzenphysiologie, 105(5), 427-434.
    Liu, S., Liu, Y., Yang, X., Tong, C., Edwards, D., Parkin, I. A., et al., (2014). The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature communications, 5, 3930.
    López-Urrea, R., Montoro, A., López-Fuster, P., & Fereres, E. (2009). Evapotranspiration and responses to irrigation of broccoli. Agricultural Water Management, 96(7), 1155-1161.
    Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727-747.
    Maraschin, S. D. F., Vennik, M., Lamers, G. E., Spaink, H. P., & Wang, M. (2005). Time-lapse tracking of barley androgenesis reveals position-determined cell death within pro-embryos. Planta, 220(4), 531-540.
    Mishra, R., & Rao, G. J. N. (2016). In-vitro androgenesis in rice: advantages, constraints and future prospects. Rice Science, 23(2), 57-68.
    Monteiro, A., & Lunn, T. (1998). Trends and perspectives of vegetable Brassica breeding world-wide. In WCHR-World Conference on Horticultural Research 495 (pp. 273-280) Rome, Italy.
    Moreno, D. A., Carvajal, M., López-Berenguer, C., & García-Viguera, C. (2006). Chemical and biological characterisation of nutraceutical compounds of broccoli. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1508-1522.
    Moreno, D. A., Pérez-Balibrea, S., Ferreres, F., Gil-Izquierdo, Á., & García-Viguera, C. (2010). Acylated anthocyanins in broccoli sprouts. Food Chemistry, 123(2), 358-363.
    Mukherjee, S., Gangopadhyay, H., & Das, D. K. (2008). Broccoli: a unique vegetable that protects mammalian hearts through the redox cycling of the thioredoxin superfamily. Journal of Agricultural and Food Chemistry, 56(2), 609-617.
    Mulligan, G. A., & Bailey, L. G. (1976). Seed coats of some Brassica and Sinapis weedy and cultivated in Canada. Economic Botany, 30(2), 143-148.
    Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497.
    Murashima, M., Watanabe, S., Zhuo, X. G., Uehara, M., & Kurashige, A. (2004). Phase 1 study of multiple biomarkers for metabolism and oxidative stress after one‐week intake of broccoli sprouts. Biofactors, 22(1‐4), 271-275.
    Murovec, J., & Bohanec, B. (2011). Haploids and doubled haploids in plant breeding. Plant Breeding, Dr. Ibrokhim Abdurakhmonov (Ed.).–2012.–Р, 87-106.
    NISHIYAMA, I. (1961). Cytogenetic Studies in Avena VIII. The Japanese Journal of Genetics, 36(3-4), 72-75.
    Page, T., Griffiths, G., & Buchanan-Wollaston, V. (2001). Molecular and biochemical characterization of postharvest senescence in broccoli. Plant Physiology, 125(2), 718-727.
    Pan, M. J., & Van Staden, J. (1998). The use of charcoal in in vitro culture–A review. Plant Growth Regulation, 26(3), 155-163.
    Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5.
    Pauk, J., Mihaly, R., Monostori, T., & Puolimatka, M. (2003). Protocol of triticale (x Triticosecale Wittmack) microspore culture. In Doubled Haploid Production in Crop Plants (pp. 129-134). Springer, Dordrecht.
    Phippen, C., & Ockendon, D. J. (1990). Genotype, plant, bud size and media factors affecting anther culture of cauliflowers (Brassica oleracea var. botrytis). Theoretical and Applied Genetics, 79(1), 33-38.
    Pink, D., Bailey, L., McClement, S., Hand, P., Mathas, E., Buchanan-Wollaston, V., et al., (2008). Double haploids, markers and QTL analysis in vegetable brassicas. Euphytica, 164(2), 509-514.
    Powell, L. W., McKEERING, L. V., & Halliday, J. W. (1975). Alterations in tissue ferritins in iron storage disorders. Gut, 16(11), 909-912.
    Prasanna, B. M., Chaikam, V., & Mahuku, G. (2012). Doubled Haploid Technology in Maize Breeding: Theory and Practice. CIMMYT, Mexico D.F., 50 pages.
    Pulli, S., & Guo, Y. D. (2003). Microspore culture of rye. In Doubled Haploid Production in Crop Plants (pp. 151-154). Springer, Dordrecht.
    Ravanfar, S. A., Orbovic, V., Moradpour, M., Abdul Aziz, M., Karan, R., Wallace, S., & Parajuli, S., (2017). Improvement of tissue culture, genetic transformation, and applications of biotechnology to Brassica. Biotechnology and Genetic Engineering Reviews, 33(1), 1-25.
    Ren, J., Wu, P., Trampe, B., Tian, X., Lübberstedt, T., & Chen, S. (2017). Novel technologies in doubled haploid line development. Plant biotechnology journal, 15(11), 1361-1370.
    Reynolds, T. L., (1984). Callus formation and organogenesis in anther cultures of Solanum carolinense L. Journal of Plant Physiology, 117(2), 157-161.
    Reynolds, T. L., (1986). Pollen embryogenesis in anther cultures of Solanum carolinense L. Plant Cell Reports, 5(4), 273-275.
    Reynolds, T. L., (1997). Pollen embryogenesis. Plant Molecular Biology, 33(1), 1-10.
    Rodríguez-Cantú, L. N., Gutiérrez-Uribe, J. A., Arriola-Vucovich, J., Díaz-De La Garza, R. I., Fahey, J. W., & Serna-Saldivar, S. O. (2011). Broccoli (Brassica oleracea var. italica) sprouts and extracts rich in glucosinolates and isothiocyanates affect cholesterol metabolism and genes involved in lipid homeostasis in hamsters. Journal of Agricultural and Food Chemistry, 59(4), 1095-1103.
    Ross, J. A., & Kasum, C. M. (2002). Dietary flavonoids: bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 22(1), 19-34.
    Sarina, P., & Chadha, S. (2010). Generation of doubled haploids through induced androgenesis in Ethiopian mustard (Brassica carinata A. Braun). Journal of Hill Agriculture, 1(2), 107-113.
    Seguí-Simarro, J. M., (2010). Androgenesis revisited. The Botanical Review, 76(3), 377-404.
    Shapla, S. A., Hussain, M. A., Mandal, M. S. H., Mehraj, H., & Uddin, A. J. (2014). Growth and Yield of Broccoli (Brassica oleracea var. italica L.) to different planting times. First issue: Volume 01 Issue 01, July-December 2013 Current Issue: Volume 02 Issue 02, October-December 2014.
    Shariatpanahi, M. E., Bal, U., Heberle‐Bors, E., & Touraev, A. (2006). Stresses applied for the re‐programming of plant microspores towards in vitro embryogenesis. Physiologia Plantarum, 127(4), 519-534.
    Shemilt, L. W., (Ed.). (1983). Chemistry and World Food Supplies: The New Frontiers, Chemrawn II: Invited Papers Presented at the International Conference on Chemistry and World Food Supplies, Manila, Philippines, 6-10 December 1982 (No. 2). International Rice Research Center.
    Sibi, M. L., Kobaissi, A., & Shekafandeh, A. (2001). Green haploid plants from unpollinated ovary culture in tetraploid wheat (Triticum durum Defs.). Euphytica, 122(2), 351-359.
    Siebel, J., & Pauls, K. P. (1989). A comparison of anther and microspore culture as a breeding tool in Brassica napus. Theoretical and applied genetics, 78(4), 473-479.
    Silva, T. D., (2012). Microspore embryogenesis, K.-I. Sato (Ed.), Embryogenesis, InTech (2012), pp. 573-596.
    Snape, J. W., De Buyser, J., Henry, Y., & Simpson, E. (1986). A comparison of methods of haploid production in a cross of wheat, Triticum aestivum. Zeitschrift für Pflanzenzüchtung, 96(4), 320-330.
    Soriano, M., Li, H., & Boutilier, K. (2013). Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reproduction, 26(3), 181-196.
    Sunderland, N., (1971). Anther culture: a progress report. Science Progress (1933-), 527-549.
    Swanson, E. B., Coumans, M. P., Wu, S. C., Barsby, T. L., & Beversdorf, W. D. (1987). Efficient isolation of microspores and the production of microspore-derived embryos from Brassica napus. Plant Cell Reports, 6(2), 94-97.
    Takahata, Y., & Keller, W. A. (1991). High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L. Plant Science, 74(2), 235-242.
    Tang, F., Tao, Y., Zhao, T., & Wang, G. (2006). In vitro production of haploid and doubled haploid plants from pollinated ovaries of maize (Zea mays). Plant Cell, Tissue and Organ Culture, 84(2), 233-237.
    Tanksley, S. D., (1995). Microprep Protocol for Extraction of DNA from Tomato and other Herbaceous Plants. Plant Molecular Biology Reporter.
    Testillano, P., Georgiev, S., Mogensen, H. L., Coronado, M. J., Dumas, C., Risueño, M. C., & Matthys-Rochon, E. (2004). Spontaneous chromosome doubling results from nuclear fusion during in vitro maize induced microspore embryogenesis. Chromosoma, 112(7), 342-349.
    Testillano, P. S., (2018). Stress-Induced Microspore Embryogenesis in Crop Plants: Cell Totipotency Acquisition and Embryo Development.
    Thomas E, Wenzel G., (1975) Embroygenesis from microspores of Brassica napus. Z Pflanzenzücht 74: 77–81.
    Thompson, K. F., (1974, January). Homozygous diploid lines from naturally occurring haploids. In Fette Seifen Anstrichmittel (Vol. 76, No. 7, pp. 303-303). ERNST-MEY-STR 8, 70771 LEINFELDEN-ECHTERDINGEN, GERMANY: KONRADIN INDUSTRIEVERLAG GMBH.
    Touraev, A., Forster, B. P., & Jain, S. M. (Eds.). (2009). Advances in Haploid Production in Higher Plants. 348 pp. Berlin, Germany: Springer.
    Touraev, A., & Heberle-Bors, E. (2003). Anther and microspore culture in tobacco. In Doubled Haploid Production in Crop Plants (pp. 223-228). Springer, Dordrecht.
    Touraev A., Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Advances in Botanical Research 35: 53–109.
    Touraev, A., Vicente, O., & Heberle-Bors, E. (1997). Initiation of microspore embryogenesis by stress. Trends in Plant Science, 2(8), 297-302.
    Turcotte, E. L., & Feaster, C. V. (1974). Methods of producing haploids: semigametic production of cotton haploids. In Haploids in Higher Plants. Advances and Potential Proceedings of the First International Symposium Guelph (p. 53).
    Twell, D., Park, S. K., & Lalanne, E. (1998). Asymmetric division and cell-fate determination in developing pollen. Trends in Plant Science, 3(8), 305-310.
    Vallejo, F., García-Viguera, C., & Tomás-Barberán, F. A. (2003). Changes in broccoli (Brassica oleracea L. var. italica) health-promoting compounds with inflorescence development. Journal of Agricultural and Food Chemistry, 51(13), 3776-3782.
    Vallejo, F., Tomás-Barberán, F. A., & Ferreres, F. (2004). Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography–UV diode-array detection–electrospray ionisation mass spectrometry. Journal of Chromatography A, 1054(1-2), 181-193.
    Vanduchova, A., Anzenbacher, P., & Anzenbacherova, E. (2019). Isothiocyanate from broccoli, sulforaphane, and its properties. Journal of Medicinal Food, 22(2), 121-126.
    Viskupičová, J., Ondrejovič, M., & Šturdík, E. (2009). The potential and practical applications of acylated flavonoids. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 64(6), 355-360.
    Wan, Y., Petolino, J. F., & Widholm, J. M. (1989). Efficient production of doubled haploid plants through colchicine treatment of anther-derived maize callus. Theoretical and Applied Genetics, 77(6), 889-892.
    Weber, D. F., (2014). Today's use of haploids in corn plant breeding. In Advances in Agronomy (Vol. 123, pp. 123-144). Academic Press.
    Wędzony, M., Forster, B. P., Żur, I., Golemiec, E., Szechyńska-Hebda, M., Dubas, E., & Gotębiowska, G., (2009). Progress in doubled haploid technology in higher plants. In Advances in Haploid Production in Higher Plants (pp. 1-33). Springer, Dordrecht.
    Wolyn, D. J., & Nichols, B. (2003). Asparagus microspore and anther culture. In Doubled Haploid Production in Crop Plants (pp. 265-273). Springer, Dordrecht.
    Wu, S., & Zhao, B. (2017). Using clear nail polish to make Arabidopsis epidermal impressions for measuring the change of stomatal aperture size in immune response. In Plant Pattern Recognition Receptors (pp. 243-248). Humana Press, New York, NY.
    Würschum, T., Tucker, M. R., Reif, J. C., & Maurer, H. P. (2012). Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling. BMC Plant Biology, 12(1), 109.
    Xaxa, S., & Choyal, P. (2018). Effect of different micronutrients on head quality of broccoli (Brassica oleracea var. Italica) palam samridhi. Journal of Pharmacognosy and Phytochemistry, 7(4), 1396-1398.
    Yan, G., Liu, H., Wang, H., Lu, Z., Wang, Y., Mullan, D., et al., (2017). Accelerated generation of selfed pure line plants for gene identification and crop breeding. Frontiers in Plant Science, 8, 1786.
    Yan, M. M., Xu, C., Kim, C. H., Um, Y. C., Bah, A. A., & Guo, D. P. (2009). Effects of explant type, culture media and growth regulators on callus induction and plant regeneration of Chinese jiaotou (Allium chinense). Scientia Horticulturae, 123(1), 124-128.
    Yang, Q., Chauvin, J. E., & Hervé, Y. (1992). A study of factors affecting anther culture of cauliflower (Brassica oleracea var. botrytis). Plant cell, tissue and organ culture, 28(3), 289-296.
    Yuan, S., Su, Y., Liu, Y., Li, Z., Fang, Z., Yang, L., et al., (2015). Chromosome doubling of microspore-derived plants from cabbage (Brassica oleracea var. capitata L.) and broccoli (Brassica oleracea var. italica L.). Frontiers in Plant Science, 6, 1118.
    Zaki, M. A. M., & Dickinson, H. G. (1991). Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sexual Plant Reproduction, 4(1), 48-55.
    Zhao, J., Artemyeva, A., Del Carpio, D. P., Basnet, R. K., Zhang, N., Gao, J., et al., (2010). Design of a Brassica rapa core collection for association mapping studies. Genome, 53(11), 884-898.
    Zhou, C., & Yang, H. Y. (1981). In vitro embryogenes in unfertilized embryo sacs of Oryza sativa L. Chih wu Hsueh Pao= Acta Botanica Sinica 23, 176–180.
    Zimmerman, J. L., (1993). Somatic embryogenesis: a model for early development in higher plants. The Plant Cell, 5(10), 1411.

    下載圖示
    2025-06-12公開
    QR CODE