| 研究生: |
朱家葆 Chu, Chia-Pao |
|---|---|
| 論文名稱: |
探討柚皮素和SolyR2R3MYBS10-X在番茄雄配子體發育過程中可能參與耐熱的角色 Investigation of the Role of Naringenin and SolyR2R3MYBS10-X in Thermotolerance during Tomato Male Gametophyte Development |
| 指導教授: |
李瑞花
Lee, Ruey-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物與微生物科學研究所 Institute of Tropical Plant Sciences and Microbiology |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 番茄(Solanum lycopersicum) 、熱逆境 、SolyR2R3MYBS10-X 、柚皮素 |
| 外文關鍵詞: | Tomato(Solanum lycopersicum), Heat stress, SolyR2R3MYBS10-X, Naringenin |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
番茄(Solanum lycopersicum)屬於茄科,是全球產量排名第三的蔬菜作物,同時具有生長期相對較短且產量較高的作物。但是全球暖化造成的衝擊,尤其是熱逆境(Heat stress),對番茄的產量和品質產生嚴重負面影響。為了解決番茄對高溫敏感的問題, 本研究以一功能未知R2R3-MYB轉錄因子SolyR2R3MYBS10-X為研究對象,從基因共表現網絡分析,推斷這新穎轉錄因子可能參與調控次級代謝黃酮類化合物合成相關基因,黃酮類化合物已知對植物生長發育及抵抗環境逆境扮演重要角色。本實驗藉由SolyR2R3MYBS10-X大量表現及基因剃除轉植株的建構,探討SolyR2R3MYBS10-X是否參與查耳酮-黃烷酮異構酶chalcone-flavanone isomerase基因調控,參與柚皮素naringenin生合成增加番茄在生殖生長期間耐熱能力。柚皮素也是合成其他類黃酮素關鍵中間產物,利用外源噴灑柚皮素,實驗結果證明柚皮素可顯著提升耐熱品種CLN1621L的花粉活力、萌發率及結實與種子數,然而,對熱敏感品種CA4則未觀察到明顯改善,顯示其效應依基因型而異。於熱逆境下,攜帶外源基因載體的農桿菌存活與生長優於空載體,顯示外源基因可能對熱逆境有潛在效益。在植物再生方面,子葉能成功誘導形成癒傷組織與不定芽,但根誘導及完整植株重建仍須進一步優化。本研究結果不僅提供番茄熱逆境分子及生理調控的新見解,也為耐逆境品種育種及外源黃酮類調控的應用提出具體發展方向。
Tomato (Solanum lycopersicum) belongs to the Solanaceae family and is the third most widely produced vegetable crop worldwide. It is also a crop with a relatively short growth cycle and high yield. However, the impacts of global warming, particularly heat stress, have severely affected tomato yield and quality. To address tomato sensitivity to high temperature, this study focuses on a functionally uncharacterized R2R3-MYB transcription factor, SolyR2R3MYBS10-X. Based on gene co-expression network analysis, this novel transcription factor is predicted to regulate genes involved in flavonoid biosynthesis. Flavonoids are known to play critical roles in plant growth, development, and tolerance to environmental stresses. In this study, transgenic plants overexpressing and knocking out SolyR2R3MYBS10-X were generated to investigate whether this gene regulates chalcone–flavanone isomerase (CHI) and contributes to the biosynthesis of naringenin, thereby enhancing heat tolerance during the reproductive growth in tomato. Naringenin is also a key intermediate in the biosynthesis of other flavonoids. Through exogenous application of naringenin, our results demonstrated that naringenin significantly improved pollen viability, germination rate, fruit set, and seed number in the heat-tolerant cultivar CLN1621L. In contrast, no significant improvement was observed in the heat-sensitive cultivar CA4, indicating that the effect is genotype-dependent. Under heat stress conditions, Agrobacterium carrying the exogenous gene construct exhibited better survival and growth than those with an empty vector, suggesting that the introduced gene may confer potential benefits under heat stress. In terms of plant regeneration, cotyledons successfully induced callus formation and adventitious shoot development; however, root induction and complete plant regeneration still require further optimization. Overall, the findings of this study provide new molecular and physiological insights into tomato heat stress regulation and offer promising directions for stress-tolerant breeding and the application of exogenous flavonoid regulation.
Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: Location and functional significance [Review]. Plant Science, 196, 67–76. https://doi.org/10.1016/j.plantsci.2012.07.014
Ahmad, M., Imtiaz, M., Nawaz, M., Mubeen, F., & Imran, A. (2022). What Did We Learn From Current Progress in Heat Stress Tolerance in Plants? Can Microbes Be a Solution? [Review]. Frontiers in Plant Science, 13, 19, Article 794782. https://doi.org/10.3389/fpls.2022.794782
Aklilu, E. (2021). Review on forward and reverse genetics in plant breeding [Review]. All Life, 14(1), 127–135. https://doi.org/10.1080/26895293.2021.1888810
ALEXANDER, M. (1980). A VERSATILE STAIN FOR POLLEN FUNGI, YEAST AND BACTERIA. Stain technology, 55(1), 13–18. https://doi.org/10.3109/10520298009067890
Alsamir, M., Mahmood, T., Trethowan, R., & Ahmad, N. (2021). An overview of heat stress in tomato ( Solanum lycopersicum L.) [Review]. Saudi Journal of Biological Sciences, 28(3), 1654–1663. https://doi.org/10.1016/j.sjbs.2020.11.088
Añibarro-Ortega, M., Dias, M., Petrovic, J., Núñez, S., Calhelha, R., Costa, E., Machado, M., Pintado, M., Sokovic, M., López, V., Barros, L., & Pinela, J. (2025). Valorization of Solanum melongena L. crop by-products: Phenolic composition and in vitro antioxidant, antidiabetic, anti-inflammatory, cytotoxic, and antimicrobial properties. Process Biochemistry, 153, 315–324. https://doi.org/10.1016/j.procbio.2025.04.002
Azhar, Z., Aimon, H., & Elida, E. (2019). Environmental and Economic Value Studies in the Use of the Tomatoes Production Land. 2nd Padang International Conference on Education, Economics, Business and Accounting (PICEEBA-2 2018),
Bayir, H. (2005). Reactive oxygen species. Crit Care Med, 33(12 Suppl), S498–501. https://doi.org/10.1097/01.ccm.0000186787.64500.12
Bita, C. E. (2016). Heat stress tolerance responses in developing tomato anthers Wageningen University and Research].
Bovy, A., Schijlen, E., & Hall, R. (2007). Metabolic engineering of flavonoids in tomato (Solanum lycopersicum):: the potential for metabolomics. Metabolomics, 3(3), 399–412. https://doi.org/10.1007/s11306-007-0074-2
Caliskan, I., Ametefe, G., Caliskan, A., Lau, S., Liew, Y., Ikram, N., & Tan, B. (2025). Unraveling the Functional Diversity of MYB Transcription Factors in Plants: A Systematic Review of Recent Advances [Review]. Phyton-International Journal of Experimental Botany, 94(8), 26. https://doi.org/10.32604/phyton.2025.067225
Cao, Y., Li, K., Li, Y., Zhao, X., & Wang, L. (2020). MYB Transcription Factors as Regulators of Secondary Metabolism in Plants [Review]. Biology-Basel, 9(3), 16, Article 61. https://doi.org/10.3390/biology9030061
Chen, Z., Wu, Z., Dong, W., Liu, S., Tian, L., Li, J., & Du, H. (2022). MYB Transcription Factors Becoming Mainstream in Plant Roots [Review]. International Journal of Molecular Sciences, 23(16), 16, Article 9262. https://doi.org/10.3390/ijms23169262
Craufurd, P., & Wheeler, T. (2009). Climate change and the flowering time of annual crops [Review]. Journal of Experimental Botany, 60(9), 2529–2539. https://doi.org/10.1093/jxb/erp196
Daryanavard, H., Postiglione, A., Mühlemann, J., & Muday, G. (2023). Flavonols modulate plant development, signaling, and stress responses [Review]. Current Opinion in Plant Biology, 72, 14, Article 102350. https://doi.org/10.1016/j.pbi.2023.102350
De Corato, U., Patruno, L., Avella, N., Salimbeni, R., Lacolla, G., Cucci, G., & Crecchio, C. (2020). Soil management under tomato -wheat rotation increases the suppressive response against Fusarium wilt and tomato shoot growth by changing the microbial composition and chemical parameters. Applied Soil Ecology, 154, 18, Article 103601. https://doi.org/10.1016/j.apsoil.2020.103601
Delarue, M., Benhamed, M., & Fragkostefanakis, S. (2024). The role of epigenetics in tomato stress adaptation. New Crops, 2, 100044. In.
Dong, W., & Song, Y. (2020). The Significance of Flavonoids in the Process of Biological Nitrogen Fixation [Review]. International Journal of Molecular Sciences, 21(16), 18, Article 5926. https://doi.org/10.3390/ijms21165926
Driedonks, N., Xu, J., Peters, J., Park, S., & Rieu, I. (2015). Multi-Level Interactions Between Heat Shock Factors, Heat Shock Proteins, and the Redox System Regulate Acclimation to Heat [Review]. Frontiers in Plant Science, 6, 9, Article 999. https://doi.org/10.3389/fpls.2015.00999
Du, H., Feng, B., Yang, S., Huang, Y., & Tang, Y. (2012). The R2R3-MYB Transcription Factor Gene Family in Maize. Plos One, 7(6), 12, Article e37463. https://doi.org/10.1371/journal.pone.0037463
FAOSTAT,2023
Ferreyra, M., Serra, P., & Casati, P. (2021). Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure [Review]. Physiologia Plantarum, 173(3), 736–749. https://doi.org/10.1111/ppl.13543
Fini, A., Guidi, L., Ferrini, F., Brunetti, C., Di Ferdinando, M., Biricolti, S., Pollastri, S., Calamai, L., & Tattini, M. (2012). Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: An excess light stress affair? Journal of Plant Physiology, 169(10), 929–939. https://doi.org/10.1016/j.jplph.2012.02.014
Flores, F., Ramirez-Guerrero, H., Maxwell, L., Eybishitz, A., Barchenger, D., & Avellaneda, M. (2024). Adaptability and Yield Performance of Introduced Tomato Lines under Greenhouse and Open Field Conditions in Honduras. Hortscience, 59(8), 1041–1048. https://doi.org/10.21273/hortsci17753-24
Fowler, Z. L., & Koffas, M. A. (2009). Biosynthesis and biotechnological production of flavanones: current state and perspectives. Applied Microbiology and Biotechnology, 83(5), 799–808.
Gao, H., Wang, S., Shen, D., Li, W., Zhang, Y., Deng, J., Jiao, J., Huang, P., Ma, Q., Huang, Y., Yuan, F., Wang, X., Zhang, J., Liao, W., Li, M., Yan, Y., Li, Q., & Cheng, Y. (2024). Protected cultivation can mitigate carbon emissions for tomato production. Agriculture Communications, 2(4), 11, Article 100065. https://doi.org/10.1016/j.agrcom.2024.100065
Gates, D., Strickler, S., Mueller, L., Olson, B., & Smith, S. (2016). Diversification of R2R3-MYB Transcription Factors in the Tomato Family Solanaceae. Journal of Molecular Evolution, 83(1-2), 26–37. https://doi.org/10.1007/s00239-016-9750-z
Giorno, F., Wolters-Arts, M., Mariani, C., & Rieu, I. (2013). Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants, 2(3), 489–506.
Gurumurthy, C., Grati, M., Ohtsuka, M., Schilit, S., Quadros, R., & Liu, X. (2016). CRISPR: a versatile tool for both forward and reverse genetics research. Human Genetics, 135(9), 971–976. https://doi.org/10.1007/s00439-016-1704-4
Ha, M., Chen, L., Tan, Z., Wang, J., Xu, N., Lin, X., Wang, L., Sang, T., & Shu, S. (2025). Effect of goji berry rootstock grafting on growth and physiological metabolism of tomato under high-temperature stress. Plant Physiology and Biochemistry, 222, 11, Article 109706. https://doi.org/10.1016/j.plaphy.2025.109706
Haider, S., Iqbal, J., Naseer, S., Yaseen, T., Shaukat, M., Bibi, H., Ahmad, Y., Daud, H., Abbasi, N., & Mahmood, T. (2021). Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives [Review]. Plant Cell Reports, 40(12), 2247–2271. https://doi.org/10.1007/s00299-021-02696-3
Hamdan, M., Karlson, C., Teoh, E., Lau, S., & Tan, B. (2022). Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses [Review]. Plants-Basel, 11(19), 23, Article 2625. https://doi.org/10.3390/plants11192625
Hashmi, S., Bilal, S., Jan, R., Asif, S., Abdelbacki, A., Kim, K., Al-Harrasi, A., & Asaf, S. (2025). Exploring the role of ATP-binding cassette transporters in tomato (Solanum lycopersicum) under cadmium stress through genome-wide and transcriptomic analysis. Frontiers in Plant Science, 16, 17, Article 1536178. https://doi.org/10.3389/fpls.2025.1536178
Hatamipoor, S., Shabani, L., & Farhadian, S. (2023). Supportive effect of naringenin on NaCl-induced toxicity in Carthamus tinctorius seedlings. International Journal of Phytoremediation, 25(7), 889–899. https://doi.org/10.1080/15226514.2022.2117790
Heiba, Y., Nasr, M., Fujii, M., Mohamed, A., & Ibrahim, M. (2024). Improving irrigation schemes using sustainable development goals (SDGs)-related indicators: a case study of tomato production in pot-scale experimentation. Environment Development and Sustainability, 26(7), 17721–17747. https://doi.org/10.1007/s10668-023-03357-z
Horváth, I., Glatz, A., Nakamoto, H., Mishkind, M., Munnik, T., Saidi, Y., Goloubinoff, P., Harwood, J., & Vigh, L. (2012). Heat shock response in photosynthetic organisms: Membrane and lipid connections [Review]. Progress in Lipid Research, 51(3), 208–220. https://doi.org/10.1016/j.plipres.2012.02.002
Jagadish, S. (2020). Heat stress during flowering in cereals - effects and adaptation strategies [Review]. New Phytologist, 226(6), 1567–1572. https://doi.org/10.1111/nph.16429
Jankowicz-Cieslak, J., & Till, B. J. (2015). Forward and reverse genetics in crop breeding. Advances in plant breeding strategies: breeding, biotechnology and molecular tools, 215–240.
Jiang, C., & Rao, G. (2020). Insights into the Diversification and Evolution of R2R3-MYB Transcription Factors in Plants1. Plant Physiology, 183(2), 637–655. https://doi.org/10.1104/pp.19.01082
Jin, Q., Chachar, M., Ali, A., Chachar, Z., Zhang, P., Riaz, A., Ahmed, N., & Chachar, S. (2024). Epigenetic Regulation for Heat Stress Adaptation in Plants: New Horizons for Crop Improvement under Climate Change [Review]. Agronomy-Basel, 14(9), 21, Article 2105. https://doi.org/10.3390/agronomy14092105
Kang, X., Zhao, L., & Liu, X. (2024). Calcium Signaling and the Response to Heat Shock in Crop Plants [Review]. International Journal of Molecular Sciences, 25(1), 23, Article 324. https://doi.org/10.3390/ijms25010324
Khanduri, P., & Roy, S. K. (2024). Global Warming and Sexual Plant Reproduction: Impact on Crop Productivity. In Food Production, Diversity, and Safety Under Climate Change (pp. 165–177). Springer.
Koeda, S., & Kitawaki, A. (2024). Breakdown of Ty-1-Based Resistance to Tomato Yellow Leaf Curl Virus in Tomato Plants at High Temperatures. Phytopathology, 114(1), 294–303. https://doi.org/10.1094/phyto-04-23-0119-r
Leiss, K., Maltese, F., Choi, Y., Verpoorte, R., & Klinkhamer, P. (2009). Identification of Chlorogenic Acid as a Resistance Factor for Thrips in Chrysanthemum. Plant Physiology, 150(3), 1567–1575. https://doi.org/10.1104/pp.109.138131
Li, B., Fan, R., Sun, G., Sun, T., Fan, Y., Bai, S., Guo, S., Huang, S., Liu, J., Zhang, H., Wang, P., Zhu, X., & Song, C. (2021). Flavonoids improve drought tolerance of maize seedlings by regulating the homeostasis of reactive oxygen species. Plant and Soil, 461(1-2), 389–405. https://doi.org/10.1007/s11104-020-04814-8
Li, T., Zhang, X., Huang, Y., Xu, Z., Wang, F., & Xiong, A. (2018). An R2R3-MYB transcription factor, S1MYB28, involved in the regulation of TYLCV infection in tomato. Scientia Horticulturae, 237, 192–200. https://doi.org/10.1016/j.scienta.2018.04.020
Li, W., Ding, Z., Ruan, M., Yu, X., Peng, M., & Liu, Y. (2017). Kiwifruit R2R3-MYB transcription factors and contribution of the novel AcMYB75 to red kiwifruit anthocyanin biosynthesis. Scientific Reports, 7, 14, Article 16861. https://doi.org/10.1038/s41598-017-16905-1
Li, Z., Palmer, W., Martin, A., Wang, R., Rainsford, F., Jin, Y., Patrick, J., Yang, Y., & Ruan, Y. (2012). High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. Journal of Experimental Botany, 63(3), 1155–1166. https://doi.org/10.1093/jxb/err329
Li, Z., Tang, J., Srivastava, R., Bassham, D., & Howell, S. (2020). The Transcription Factor bZIP60 Links the Unfolded Protein Response to the Heat Stress Response in Maize OPEN. Plant Cell, 32(11), 3559–3575. https://doi.org/10.1105/tpc.20.00260
Liang, G., Liu, J., Zhang, J., & Guo, J. (2020). Effects of Drought Stress on Photosynthetic and Physiological Parameters of Tomato. Journal of the American Society for Horticultural Science, 145(1), 12–17. https://doi.org/10.21273/jashs04725-19
Liu, Y., Shen, Y., Liang, M., Zhang, X., Xu, J., Shen, Y., & Chen, Z. (2022). Identification of Peanut AhMYB44 Transcription Factors and Their Multiple Roles in Drought Stress Responses. Plants-Basel, 11(24), 18, Article 3522. https://doi.org/10.3390/plants11243522
Lu, J., Yin, Z., Lu, T., Yang, X., Wang, F., Qi, M., Li, T., & Liu, Y. (2020). Cyclic electron flow modulate the linear electron flow and reactive oxygen species in tomato leaves under high temperature. Plant Science, 292, 14, Article 110387. https://doi.org/10.1016/j.plantsci.2019.110387
Martín, J., & Liras, P. (2022). Comparative Molecular Mechanisms of Biosynthesis of Naringenin and Related Chalcones in Actinobacteria and Plants: Relevance for the Obtention of Potent Bioactive Metabolites. Antibiotics-Basel, 11(1), 21, Article 82. https://doi.org/10.3390/antibiotics11010082
Menconi, J., Perata, P., & Gonzali, S. (2023). Novel R2R3 MYB transcription factors regulate anthocyanin synthesis in Aubergine tomato plants. Bmc Plant Biology, 23(1), 20, Article 148. https://doi.org/10.1186/s12870-023-04153-7
Opabode, J. T. (2006). Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev, 1(1), 12–20.
Ortega-Salazar, I., Crum, D., Sbodio, A., Sugiyama, Y., Adaskaveg, A., Wang, D., Seymour, G., Li, X., Wang, S., & Blanco-Ulate, B. (2024). Double CRISPR knockout of pectin degrading enzymes improves tomato shelf-life while ensuring fruit quality. Plants People Planet, 6(2), 330–340. https://doi.org/10.1002/ppp3.10445
Ozougwu, J. C. (2016). The role of reactive oxygen species and antioxidants in oxidative stress. International Journal of Research, 1(8), 1–8.
Panno, S., Davino, S., Caruso, A., Bertacca, S., Crnogorac, A., Mandic, A., Noris, E., & Matic, S. (2021). A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin [Review]. Agronomy-Basel, 11(11), 45, Article 2188. https://doi.org/10.3390/agronomy11112188
Peer, W., & Murphy, A. (2007). Flavonoids and auxin transport: modulators or regulators? [Review]. Trends in Plant Science, 12(12), 556–563. https://doi.org/10.1016/j.tplants.2007.10.003
Peterson, R., Slovin, J. P., & Chen, C. (2010). A simplified method for differential staining of aborted and non-aborted pollen grains. International Journal of Plant Biology, 1(2), e13–e13.
Pucker, B., & Selmar, D. (2022). Biochemistry and Molecular Basis of Intracellular Flavonoid Transport in Plants [Review]. Plants-Basel, 11(7), 21, Article 963. https://doi.org/10.3390/plants11070963
Rai, N. P., Singh, P. K., Anamika, Y., Malik, N., & Singh, A. (2020). Factors affecting regeneration potential of tomato (Solanum lycopersicum)–A review. International Journal of Bioinformatics and Biological Sciences, 8(2), 18–24.
Ramaroson, M., Koutouan, C., Helesbeux, J., Le Clerc, V., Hamama, L., Geoffriau, E., & Briard, M. (2022). Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases [Review]. Molecules, 27(23), 24, Article 8371. https://doi.org/10.3390/molecules27238371
Ren, Y., Huang, Z., Jiang, H., Wang, Z., Wu, F., Xiong, Y., & Yao, J. (2021). A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. Journal of Experimental Botany, 72(8), 2947–2964. https://doi.org/10.1093/jxb/erab027
Richter, K., Haslbeck, M., & Buchner, J. (2010). The Heat Shock Response: Life on the Verge of Death [Review]. Molecular Cell, 40(2), 253–266. https://doi.org/10.1016/j.molcel.2010.10.006
Rieu, I., Twell, D., & Firon, N. (2017). Pollen Development at High Temperature: From Acclimation to Collapse. Plant Physiology, 173(4), 1967–1976. https://doi.org/10.1104/pp.16.01644
Rosca, M., Mihalache, G., & Stoleru, V. (2023). Tomato responses to salinity stress: From morphological traits to genetic changes [Review]. Frontiers in Plant Science, 14, 26, Article 1118383. https://doi.org/10.3389/fpls.2023.1118383
Samanta, A., Das, G., & Das, S. K. (2011). Roles of flavonoids in plants. Carbon, 100(6), 12–35.
Sato, H., Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2024). Complex plant responses to drought and heat stress under climate change [Review]. Plant Journal, 117(6), 1873–1892. https://doi.org/10.1111/tpj.16612
Schneeberger, K., & Weigel, D. (2011). Fast-forward genetics enabled by new sequencing technologies [Review]. Trends in Plant Science, 16(5), 282–288. https://doi.org/10.1016/j.tplants.2011.02.006
Shimotohno, A., Aki, S., Takahashi, N., & Umeda, M. (2021). Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. In S. S. Merchant (Ed.), Annual Review of Plant Biology, Vol 72, 2021 (Vol. 72, pp. 273–296). Annual Reviews. https://doi.org/10.1146/annurev-arplant-080720-103739
Shomali, A., Das, S., Arif, N., Sarraf, M., Zahra, N., Yadav, V., Aliniaeifard, S., Chauhan, D., & Hasanuzzaman, M. (2022). Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance [Review]. Plants-Basel, 11(22), 27, Article 3158. https://doi.org/10.3390/plants11223158
Singh, D., Biswal, A., Samanta, D., Singh, V., Kadry, S., Khan, A., & Nam, Y. (2023). RETRACTED: Smart high-yield tomato cultivation: precision irrigation system using the Internet of Things (Retracted article. See vol. 16, 2025) [; Retracted Publication]. Retracted: Frontiers in Plant Science, 14, 17, Article 1239594. https://doi.org/10.3389/fpls.2023.1239594
Song, M., Liu, Y., Li, T., Liu, X., Hao, Z., Ding, S., Panichayupakaranant, P., Zhu, K., & Shen, J. (2021). Plant Natural Flavonoids Against Multidrug Resistant Pathogens. Advanced Science, 8(15), 11, Article 2100749. https://doi.org/10.1002/advs.202100749
Szabo, K., Varvara, R., Ciont, C., Macri, A., & Vodnar, D. (2025). An updated overview on the revalorization of bioactive compounds derived from tomato production and processing by-products [Review]. Journal of Cleaner Production, 497, 14, Article 145151. https://doi.org/10.1016/j.jclepro.2025.145151
Tetorya, M., & Rajam, M. (2021). RNAi-mediated silencing of PEX6 and GAS1 genes of Fusarium oxysporum f. sp. lycopersici confers resistance against Fusarium wilt in tomato. 3 Biotech, 11(10), 8, Article 443. https://doi.org/10.1007/s13205-021-02973-8
Thomidis, T., Prodromou, I., Paresidou, M., & Damos, P. (2023). Effects of temperature and leaf wetness duration on pathogens causing preharvest fruit rots on tomato. Journal of Plant Pathology, 105(4), 1431–1448. https://doi.org/10.1007/s42161-023-01443-9
Wang, M., Dong, B., Song, Z., Qi, M., Chen, T., Du, T., Cao, H., Liu, N., Meng, D., Yang, Q., & Fu, Y. (2023). Molecular mechanism of naringenin regulation on flavonoid biosynthesis to improve the salt tolerance in pigeon pea (Cajanus cajan (Linn.) Millsp.). Plant Physiology and Biochemistry, 196, 381–392. https://doi.org/10.1016/j.plaphy.2023.02.002
Wang, Y., Feng, G., Zhang, Z., Liu, Y., Ma, Y., Wang, Y., Ma, F., Zhou, Y., Gross, R., Xu, H., Wang, R., Xiao, F., Liu, Y., & Niu, X. (2021). Overexpression of Pti4, Pti5, and Pti6 in tomato promote plant defense and fruit ripening. Plant Science, 302, 9, Article 110702. https://doi.org/10.1016/j.plantsci.2020.110702
Wu, Y., Wen, J., Xia, Y., Zhang, L., & Du, H. (2022). Evolution and functional diversification of R2R3-MYB transcription factors in plants [Review]. Horticulture Research, 9, 16, Article uhac058. https://doi.org/10.1093/hr/uhac058
Xia, X., Cheng, X., Li, R., Yao, J., Li, Z., & Cheng, Y. (2021). Advances in application of genome editing in tomato and recent development of genome editing technology [Review]. Theoretical and Applied Genetics, 134(9), 2727–2747. https://doi.org/10.1007/s00122-021-03874-3
Xu, X., Wang, Q., Li, W., Hu, T., Wang, Q., Yin, Y., Liu, X., He, S., Zhang, M., Liang, Y., Zhu, J., & Zhan, X. (2022). Overexpression of SlBBX17 affects plant growth and enhances heat tolerance in tomato. International Journal of Biological Macromolecules, 206, 799–811. https://doi.org/10.1016/j.ijbiomac.2022.03.080
Yildiztugay, E., Ozfidan-Konakci, C., Kucukoduk, M., & Turkan, I. (2020). Flavonoid Naringenin Alleviates Short-Term Osmotic and Salinity Stresses Through Regulating Photosynthetic Machinery and Chloroplastic Antioxidant Metabolism inPhaseolus vulgaris. Frontiers in Plant Science, 11, 18, Article 682. https://doi.org/10.3389/fpls.2020.00682
Zahedifar, M., Moosavi, A., Gavili, E., & Ershadi, A. (2025). Tomato fruit quality and nutrient dynamics under water deficit conditions: The influence of an organic fertilizer. Plos One, 20(1), 18, Article e0310916. https://doi.org/10.1371/journal.pone.0310916
Zeng, J., Chen, C., Chen, M., & Chen, J. (2022). Comparative transcriptomic and metabolomic analyses reveal the delaying effect of naringin on postharvest decay in citrus fruit. Frontiers in Plant Science, 13, 14, Article 1045857. https://doi.org/10.3389/fpls.2022.1045857
Zhang, H., Gong, Y., Tao, T., Lu, S., Zhou, W., Xia, H., Zhang, X., Yang, Q., Zhang, M., Hong, L., Guo, Q., Ren, X., Yang, Z., Cai, X., Ren, D., Gao, J., Jin, S., & Leng, Y. (2024). Genome-wide identification of R2R3-MYB transcription factor subfamily genes involved in salt stress in rice (Oryza sativa L.). Bmc Genomics, 25(1), 12, Article 797. https://doi.org/10.1186/s12864-024-10693-5
Zhang, X., Chen, L., Shi, Q., & Ren, Z. (2020). SIMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato. Plant Science, 291, 10, Article 110356. https://doi.org/10.1016/j.plantsci.2019.110356
Zheng, Y., Luo, X., Gao, Y., Sun, Z., Huang, K., Gao, W., Xu, H., & Xie, L. (2025). Lycopene detection in cherry tomatoes with feature enhancement and data fusion. Food Chemistry, 463, 10, Article 141183. https://doi.org/10.1016/j.foodchem.2024.141183
Zheng, Y., Zhang, Y., Zhao, Y., Wu, X., Wang, H., Zhao, H., Liu, J., Liu, B., Liu, L., & Song, W. (2024). Heterologous expression of the Oenococcus oeni two-component signal transduction response regulator in the Lactiplantibacillus plantarum WCFS1 strain enhances acid stress tolerance. Bmc Microbiology, 24(1), 15, Article 370. https://doi.org/10.1186/s12866-024-03498-9
Zhu, T., De Lima, C., & De Smet, I. (2021). The heat is on: how crop growth, development, and yield respond to high temperature [Review]. Journal of Experimental Botany, 72(21), 7359–7373. https://doi.org/10.1093/jxb/erab308
Zhu, Z., Quan, R., Chen, G., Yu, G., Li, X., Han, Z., Xu, W., Li, G., Shi, J., & Li, B. (2022). An R2R3-MYB transcription factor VyMYB24, isolated from wild grape Vitis yanshanesis JX Chen., regulates the plant development and confers the tolerance to drought. Frontiers in Plant Science, 13, 966641.
Zinn, K., Tunc-Ozdemir, M., & Harper, J. (2010). Temperature stress and plant sexual reproduction: uncovering the weakest links [Review]. Journal of Experimental Botany, 61(7), 1959–1968. https://doi.org/10.1093/jxb/erq053
拉瓦告.沙里馬勞. (2022). 番茄花發育早期在熱逆境下一新穎R2R3MYBS10-X轉錄因子 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/m9vwc2
<番茄栽培技術_郭孚耀.pdf>.