簡易檢索 / 詳目顯示

研究生: 朱清俊
Chu, Ching-Jiung
論文名稱: 應用分子動力學研究奈米薄膜沈積之力學行為與性質
Study on mechanical behaviors and properties of nanometer-scale film deposition using molecular dynamics simulation
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 114
中文關鍵詞: 分子動力學原子鑲嵌多體勢能層覆蓋率本徵殘留應力界面混合粗糙度薄膜形貌基板大小
外文關鍵詞: molecular dynamics, EAM, roughness, interfacial mixing, layer coverage, substrate sizes, intrinsic residual stresses, morphology
相關次數: 點閱:120下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於現代的微奈米元件的製造,薄膜在基板上的成長已經是當前重要的研究。本文應用原子鑲嵌多體勢能的分子動力學模擬方法,研究濺鍍製程奈米銅薄膜成長的形貌,探討不同的製程參數下,薄膜的粗糙度及覆蓋率的影響,這些製程參數包含基板的溫度、沈積的速率、入射原子的能量及入射原子的角度,本文也呈現不同的基板大小的影響。模擬的結果顯示,在500 K的低溫與10-15 eV的高濺射能量,會有比較小的表面粗糙度及比較好的層覆蓋率,薄膜沈積完成後,薄膜基板系統會迅速趨於穩定。我們模擬較大的基板於室溫的情形,顯示薄膜亦能以二維的方式擬似層狀的成長,這些模擬的結果和早期的分子動力學模擬與實驗的觀察是一致的。另一方面,我們亦探討濺鍍奈米銅薄膜的殘留應力及薄膜基板之間界面的混合情形,除製程參數的影響外,也呈現不同的基板大小的影響。模擬的結果顯示,隨著基板溫度及入射原子能量的提高,薄膜基板之間界面混合的數量會增加,然而入射能量的影響比基板溫度來的顯著。電腦模擬執行的結果顯示,隨著沈積的時間,基板表面原子平均受力震盪於排斥力與吸引力之間,且基板尺寸愈大,基板表面原子平均受力就愈小。薄膜的殘留應力,隨著吸附原子或沈積時間的增加,會逐漸趨向於一個平緩的值;薄膜的殘留應力和基板溫度及入射原子能量是很有關聯的;隨著基板溫度或入射原子能量的提高,銅薄膜的殘留應力,由起始的拉應力遞減為壓應力,在500 K的低溫約為1 GPa,而在10-15 eV的高入射能量則約為-3.65 GPa至1.25 GPa之間變化。總結而言,濺鍍薄膜沈積製程參數的設定,基板溫度在500 K至600 K、濺鍍入射能量在10至15 eV、沈積速率不宜太小,約在4 atoms/ps上下,應可得到較好的表面性質與遭受較小的機械應力之高品質的薄膜。

    The growth of thin films on substrate has become a field of much current research, because of the fabrication of many modern micro/nanometer devices. The morphology of growing nanometer-scale copper film by the sputtering process is studied using molecular dynamics (MD) simulation with embedded-atom method (EAM) many-body potential. We focus on the roughness and layer coverage for diverse deposition process parameters including substrate temperature, deposition rate, incident energy, and incident angle. This paper presents the effect of different substrate sizes. The results of simulation show smaller roughness and better layer coverage at low substrate temperature of 500K and high incident energy of 10-15eV. The film-substrate system becomes rapidly stabilized at the end of deposition. Our simulation shows that thin films can also grow with two-dimensional layer-by-layer-like way for larger size of substrate at room temperature. These simulated results are consistent with both earlier MD simulations and experimental observation. In the other hand, we have investigated the interfacial intrinsic residual stresses and interfacial mixing between substrate and films in sputtered copper films of a nanometer scale. This study presents the effect of different substrate sizes. The results of simulation reveal that the amount of interfacial mixing in film-substrate system increases after enhanced temperature of substrate or energy of incident atom while the influence of incident energy is more significant than substrate temperature. The performed computer simulations show that average force of substrate surface atoms with deposition time oscillates between repulsion and attraction. Moreover, the larger the size the smaller the force of substrate surface atoms. The residual stresses of thin films can tend towards a stead-state value with increasing adatoms gradually. The residual stresses of thin films are relevant to the substrate temperature and sputtered atomic energy in the deposition process. The residual stresses of copper films change from tensile to compressive, then back to tensile with temperature or energy enhanced. The residual stress is about 1 GPa at 500 K and ranges from -3.65 GPa to 1.25 GPa at energy of 10-15 eV. Consequently, we may get a good film of better surface properties and smaller mechanical stress for sputtered deposition at constant-temperature substrate of 500-600 K, incident energy of 10-15 eV and deposition rate of about 4 atoms/ps.

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 X 圖目錄 XI 符號說明 XV 英文字母 XV 希臘字母 XVIII 符號上標 XX 符號下標 XX 第一章 緒論 1 1-1 奈米技術與薄膜製程技術 1 1-2 研究動機及目的 7 1-3 分子動力學發展之文獻回顧 9 1-4 薄膜技術及應用MD之文獻回顧 13 1-5 本文架構 15 第二章 分子動力學基本理論 17 2-1 運動方程式 17 2-2 勢能函數 18 2-2-1 二體勢能 19 2-2-2 多體勢能 21 2-3 截斷勢能及半徑 24 2-4 計算條件 25 2-4-1 起始條件 25 2-4-2 週期邊界條件 26 2-4-3 固定邊界條件 28 2-4-4 狀態條件 29 2-5 原子的運動軌跡 30 第三章 分子動力學應用於薄膜沈積之理則 31 3-1 薄膜沈積物理模型 31 3-2 勢能函數之選擇 34 3-3 條件的給定 34 3-4 Verlet鄰近表列法 36 3-5 Gear五階預測修正法 39 3-6 系統溫度修正 42 3-7 應力的計算 42 3-8 表面粗糙度的計算 43 第四章 薄膜沈積數值模擬規劃 45 4-1 模擬的模型規劃 45 4-2 物理參數與無因次化 46 4-3 模擬的流程圖 48 第五章 結果分析與討論 50 5-1 薄膜結構及形貌 52 5-1-1 沈積薄膜結構 52 5-1-2 表面粒子平均動能 66 5-2 薄膜層覆蓋率 69 5-2-1 製程參數分析 69 5-2-2 基板尺寸效應 75 5-3 表面粗糙度分析 76 5-3-1 製程參數分析 77 5-3-2 基板尺寸效應 79 5-4 界面粒子的混合 80 5-4-1 基板溫度效應 81 5-4-2 入射粒子動能效應 83 5-4-3 基板尺寸效應 85 5-5 薄膜應力分析 86 5-5-1 基板溫度效應 89 5-5-2 入射粒子動能效應 91 5-5-3 基板尺寸效應 95 第六章 結論與建議 97 6-1 結論 97 6-2 建議與未來方向 99 參考文獻 101 自述 114

    [1] G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57 (1982).
    [2] G. Binnig, H. Rohrer, “Scanning tunneling microscopy,” Surf. Sci. 126, 236 (1983).
    [3] G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930 (1986).
    [4] D. M. Eigler, E. K. Schweizer, “Positioning single atoms with a scanning tunneling microscopy,” Nature 344, 524 (1990).
    [5] M. K. LEE, H. D. WANG and J. J. WANG, “A Cu SEED LAYER FOR Cu DEPOSITION ON SILICON,” Solid-State Electronics 41, 695 (1997).
    [6] V. WEIHNACHT and W. BRCKNER, “DISLOCATION ACCUMULATION AND STRENGTHENING IN Cu THIN FILMS,” Acta mater. 49, 2365 (2001).
    [7] Namwoong Paik, “Characteristics of Cu films prepared using a magnetron sputter type negative ion source (MSNIS),” Appl. Surf. Sci. 252, 1812 (2005).
    [8] J.M. Bennett, “Recent developments in surface roughness characterization,” Meas. Sci. Technol. 3, 1119 (1992).
    [9] D. Rnnow, J. Isidorsson, G.A. Niklasson, “Surface roughness of sputtered ZrO2 films studied by atomic force microscopy and spectroscopic light scattering,” Phys. Rev. B 54, 4021 (1996).
    [10] S. Ghosh, Kwangpyo Hong, Chongmu Lee, “Structural and physical properties of thin copper films deposited on porous silicon,” Mater. Sci. Eng. B 96, 53 (2002).
    [11] R. Saxena, W. Cho, O. Rodriguez, W.N. Gill, J.L. Plawsky, “Stability of thin copper films on mesoporous dielectrics” J. Non-Cryst. Solids 350, 14 (2004).
    [12] D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Noyes Publications, New Jersey, 1998
    [13] J. E. Mahan, Physical Vapor Deposition of Thin Film, John Wiley & Sons, Inc., New York, 2000.
    [14] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, Inc., New York, 1994.
    [15] W.N.G. Hitchon, Plasma Processes for Semiconductor Fabrication, Cambridge University Press, London, 1999
    [16] A.A.R. Elshabini, F.D. Barlow, Thin Film Technology Handbook, McGraw-Hill, New York, 1998.
    [17] 羅吉宗,薄膜科技與應用,全華科技圖書,台灣,中華民國九十三年.
    [18] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford, 1958.
    [19] 吳大猷,量子力學(甲部、乙部),聯經出版社,台灣,中華民國六十八年.
    [20] J.M. Haile, Molecular Dynamics Simulation, John Wiley and Sons, Inc., New York, 1992.
    [21] D. Frenkel, B. Smit, Understanding Molecular Simulations, Academic, New York, 1996.
    [22] D.C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997.
    [23] J. M. Goodfellow et al., Molecular dynamics, CRC Press, Boston, 1990.
    [24] D. W. Heermann, Computer Simulation Method in Theoretical Physics, Springer-Verlag, Berlin, 1990.
    [25] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Oxford Science, London, 1991.
    [26] W. Eckstein, Computer Simulation of Ion-Solid interaction, Springer-Verlag, Berlin, 1991.
    [27] M. P. Allen et al., Computer Simulation in Chemical Physics, Series C: Mathematical and Physical Sciences Vol. 397, Kluwer Academic, Dordrecht, 1992.
    [28] M. Meyer et al., Computer Simulation in Material Science, Series E: Applied Sciences Vol. 205, Kluwer Academic, Dordrecht, 1991.
    [29] K. Matsuyama, H. Asada, S. Ikeda, K. Taniguchi, “Low current magnetic-RAM memory operation with a high sensitive spin valve material,” IEEE Trans. on Magn. 33, 3283 (1997).
    [30] C. Tsang, R. E. Fontana, T. Lin, D. E. Heim, V. S. Speriousu, B. A. Gurney, M. L. Williams, “Design, fabrication & testing of spin-valve read heads for high density recording,” IEEE Trans. on Magn. 30, 3801 (1994).
    [31] D. D. Tang, P. K. Wang, V. S. Spcriosu, S. Le, K. K. Kung, “Spin-valve RAM cell,” IEEE Trans. on Magn. 31, 3206 (1995).
    [32] A. S. Ebrahim, R. S. Huang, C. T. Kowk, “A Novel Optical Accelerometer,” IEEE electron device lett. 16, 166 (1995).
    [33] Hidefumi Yamamoto, Kazuhiko Yamada, “The application of giant MR films to magnetic devices,” Mater. Sci. Eng. B 31, 207 (1995).
    [34] Jui-Chang Chuang, Mao-Chieh Chen, “Properties of thin Ta-N films reactively sputtered on Cu/SiO2/Si substrates,” Thin Solid Films 322, 213 (1998).
    [35] K. Noda, T. Kawanabe, T. Hirata, M. Naoe, “Optimization of sputtering conditions for protective carbon thin films of rigid disks deposited by FTS,” Vac. 51, 735 (1998).
    [36] International Technology Roadmap for Semiconductor, 1999.
    (http://public.itrs.net/1999_sia_roadmap/home.html)
    [37] M. Biberger, Barrier and Seed layers for sub 0.18 μm Copper Technology, 9 March, Thin Film Users Group, 1999.
    (http://www.vacuum.org/nccavs/tfugproc.html)
    [38] S. W. Kang, H. U. Kim, S. W. Rhee, “Dry etching of copper film with hexafluoroacetylacetone via oxidation process,” J. Vac. Sci. Tech. B 17, 154 (1999).
    [39] Y. Igarashi, T. Ito, “Electromigration properties of cooper-zirconium alloy interconnects,” J. Vac. Sci. Tech. B 16, 2745 (1998).
    [40] A. Belkind, W. Gerristead, Jr., Z. Orban, “Deposition rate distribution in a rotatable cylindrical cathode system,” Thin Solid Films 207, 319 (1992).
    [41] J. A. Thornton, in R. F. Bunshah (ed.), Deposition Technologies for Films and Coatings, Noyes, Park Ridge, 1982.
    [42] P. Poulopoulos, J. Lindner, M. Farle, K. Baberschke, “Changes of magnetic anisotropy due to roughness: A quantitative scanning tunneling microscopy study on Ni/Cu(001),” Surf. Sci. 437, 277 (1999).
    [43] S. Flsh, B. C. Choi, K. H. Rieder, “Structure of ultrathin iron films on a highly asymmetrical substrate: Fe/Cu(311),” Surf. Sci. 377, 851 (1997).
    [44] M. Furukawa, Y. Yamamoto, H. Ikakura, N. Tanaka, M. Hashimoto, A. Sano, S. Shingubara, “Surface morphologies of sputter-deposited aluminum films studied using a high-resolution phase-measuring laser interferometric microscope,” Appl. Optics 35, 701 (1996).
    [45] J. Shen, J. Giergiel, J. Kirschner, “Growth and morphology of Ni/Cu(100) ultrathin films: An in situ study using scanning tunneling microscopy,” Phys. Rev. B 52, 8454 (1995).
    [46] D. Marton, J. Fine, “Sputtering-induced surface roughness of metallic thin films,” Thin Solid Films 185, 79 (1990).
    [47] 陳道隆,以分子動力學研究奈米級微結構之拉伸、壓縮、扭轉變形機制,國立成功大學機械研究所,碩士論文, 2001.
    [48] 朱訓鵬,分子動力學與平行運算於奈米薄膜沉積模擬之應用,國立成功大學機械研究所,博士論文, 2002.
    [49] 方得華,原子力顯微鏡奈米加工技術研究,國立成功大學機械研究所,博士論文, 2000.
    [50] 葉哲宜,以分子動力學模擬奈米量子點之組成,國立成功大學機械研究所,碩士論文, 2003.
    [51] J. H. Irving, J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Properties. IV. The Equations of Hydrodynamics,” J. Chem. Phys. 18, 817 (1950).
    [52] B. J. Alder, T. E. Wainwright, “Phase Transition for A Hard Sphere System,” J. Chem. Phys. 27, 1208 (1957).
    [53] B. J. Alder, T. E. Wainwright, “Studies in Molecular Dynamics. I. General Method,” J. Chem. Phys. 31, 459 (1959).
    [54] L. A. Girifalco, V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev. 114 (1959).
    [55] A. Rahman, “Correlations in the Motions of Atoms in Liquid Atom,” Phys. Rev. A 136, 405 (1964).
    [56] L. Verlet, “Computer ‘Experiments’ on Classical Fluids Ⅱ, Equilibrium Correlation Function,” Phys. Rev 165, 201 (1968).
    [57] B. J. Alder, T. E. Wainwright, “Decay of the Velocity Autocorrelation Function,” Phys. Rev. A1, 18 (1970).
    [58] F. Milstein, “Applicability of Exponentially Attractive and Repulsive Interatomic Potential Function in Description of Cubic Crystals,” J. Appl. Phys. 44, 3825 (1973).
    [59] B. Quentrec, C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations,” J. Comput. Phys. 13 (1975) 430.
    [60] C. S. Hsu, A. J. Rahman, “Crystal nucleation and growth in liquid rubidium,” J. Chem. Phys. 70, 5234 (1979).
    [61] M. Parrinello, A. Rahman, “Strain Fluntulations and Elastic Constants,” J. Chem. Phys. 76, 2662 (1982).
    [62] S. K. Schiferl, D. C. Wallace, “Elastic Constants of Crystalline Sodium from Molecular Dynamics,” Phys. Rev. B 31, 7662 (1985).
    [63] J. F. Lutsko, “Stress and Elastic Constants in Anisotropic Solids: Molecular Dynamics Techniques,” J. Appl. Phys. 64, 1152 (1988).
    [64] Z. G. Wang, U. Landman, “Molecular-Dynamics Study of Elasticity and Failure of Ideal Solids,” Phys. Rev. B 44, 378 (1991).
    [65] D. J. Quesnel, D. S. Rimai, L. P. DeMejo, “Elastic Compliances and Stiffnesses of the Fcc Lennard-Jones Solid,” Phys. Rev. B 48, 6795 (1993).
    [66] D. C. Rapaport, “Large-scale Molecular Dynamics Simulation Using Vector and Parallel Computers,” Comput. Phys. Rep. 9, 1 (1988).
    [67] G. S. Grest, B. Dnweg, K. Kremer, “Vectorrized Link Cell Fortran Code for Molecular Dynamics Simulations for a Large Number of Particles,” Comput. Phys. Comm. 55, 269 (1989).
    [68] R. Ochoa, T. P. Swiler, J. H. Simmons, “Molecular Dynamics Studies of Brittle Failure in Silica: Effect of Thermal Vibrations,” J. Non-Crystalline Solids 128, 57 (1991).
    [69] S. Izumi, S. Kotake, “Molecular Dynamics Study of Solid Deformation,” Trans. Jpn. Soc. Mech. Eng. (in Japanese) 59, 263 (1993).
    [70] H. Kitagawa, A. Nakatani, Y. Shibutani, “Study on Computational Modelling for Materials with Crystalline Structure ([III] A Numerical Simulation of Atomic Structure in Crack-Tip Field under Mode II Loading),” 日本機械協會論文集 (A) 59卷564號 (1993).
    [71] C. S. Becquart, D. Kim, J. A. Rifkin, P. C. Clapp, “Fracture Properties of Metals and Alloys from Molecular Dynamics Simulation,” Mater. Sci. Eng. A 170, 87 (1993).
    [72] H. Inoue, Y. Akahoshi, S. Harada, H. Chobara, “Molecular Dynamics Simulation of Temperature-Dependent Tensile Fracture of Nanoscale Polycrystal (An Analysis of Temperature Dependence),” Trans. Jpn. Soc. Mech. Eng. (in Japanese) 61, 125 (1995).
    [73] H. Kitagawa, A. Nakatani, “Computational Modelling for Materials with Crystalline (Molecular Dynamics Simulation of Microscopic Crack Tip Field under Antiplane Shear Loading),” JSME Int. J. A 38(1) (1995).
    [74] J. Schotz, T. Rasmussen, K. W. Jacobsen, O. H. Nielsen, “Mechanical Deformation of Nanocrystalline Materials,” Philosophical Magazine Lett. 74, 339 (1996).
    [75] T. Iwaki, “Molecular Dynamics Study on Stress-Strain in Very Thin Film (Size and Location of Region for Defining Stress and Strain),” JSME Int. J. A 39, 346 (1996).
    [76] T. Aya, T. Nakayama, “Influence of Environmental Temperature on Yield Stress of Polymers,” JSME Int. J. A 40, 343 (1997).
    [77] P. Heino, H. Hakkinen, K. Kaski, “Molecular-Dynamics Study of Copper with Defects under Strain,” Phys. Rev. B 58, 641 (1998).
    [78] J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov, S. Yip, “Interatomic Potential for Silicon Defects and Disordered Phases,” Phys. Rev. B 58, 2539 (1998).
    [79] Chi-Chuan Hwang, Jee-Gong Chang, Shin-Pon Ju, Ming-Horng Su, “Nanascale Impact Dynamics Using Molecular Dynamics Simulation,” J. Phys. Society Jap. 72, 533 (2003).
    [80] A. Hasnaoui, O. Politano, J.M. Salazar, G. Aral, R.K. Kalia, A. Nakano, P. Vashishta, “Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals,” Surf. Sci. 579, 47 (2005).
    [81] Chan-Yeup Chung, Yong-Chae Chung, “Molecular dynamics simulation of nano-scale Fe–Al thin film growth,” Mater. Lett. 60, 1063 (2006).
    [82] K. T. Lim, S. Brunett, “Molecular Dynamics for Very Large Systems on Massively Parallel Computers: The MPSim Program,” J. Comput. Chem. 18, 501 (1997).
    [83] D. Roccatano, R. Bizzarri, “Development of a Parallel Molecular Dynamics Code on SIMD Computers: Algorithm for Use of Pair List Criterion,” J. Comput. Chem. 19, 685 (1998).
    [84] S. Toyoda, H. Miyagawa, “Development of MD Engine: High-Speed Acceleration with Parallel Processor Design for Molecular Dynamics Simulations,” J. Comput. Chem. 20, 185 (1999).
    [85] G. Guisbiers, S. Strehle, M. Wautelet, “Modeling of residual stresses in thin films deposited by electron beam evaporation,” Microelectron. Eng. 82, 665 (2005).
    [86] S.G. Malhotra, Z.U. Rek, S.M. Yalisove, J.C. Bilello, “Analysis of thin film stress measurement techniques,” Thin Solid Films 301, 45 (1997).
    [87] Y.H. Wang, M.R. Moitreyee, R. Kumar, S.Y. Wu, J.L. Xie, P. Yew, B. Subramanian, L. Shen, K.Y. Zeng, “The mechanical properties of ultra-low-dielectric-constant films,” Thin Solid Films 462, 227 (2004).
    [88] T. Pienkos, A. Proszynski, D. Chocyk, L. Gladyszewski, G. Gladyszewski, “Stress development during evaporation of Cu and Ag on silicon,” Microelectron. Eng. 70, 442 (2003).
    [89] R.L. Engelstad, Z. Feng, E.G. Lovell, A.R. Mikkelson, J. Sohn, “Evaluation of intrinsic film stress distributions from induced substrate deformation,” Microelectron. Eng. 78-79, 404 (2005).
    [90] Y. Pauleau, “Generation and evolution of residual stresses in physical vapour-deposited thin films,” Vac. 61, 175 (2001).
    [91] Alan Lee, B.M. Clemens, W.D. Nix, “Stress induced delamination methods for the study of adhesion of Pt thin films to Si,” Acta Mater. 52, 2081 (2004).
    [92] M. Kralj, P. Pervan, M. Milun, “Growth, structure and properties of ultra-thin copper films on a V(110) surface,” Surf. Sci. 423, 24 (1999).
    [93] W. H. The, L.T. Koh, S.M. Chen, J. Xie, C.Y. Li, P.D. Foo, “Study of microstructure and resistivity evolution for electroplated copper films at near-room temperature,” Microelectronics J. 32, 579 (2001).
    [94] A. Masten, P. Wissmann, “Optical studies on thin copper films on Si(111),” Appl. Surf. Sci. 179, 68 (2001).
    [95] Hyun Park, Soo-Jung Hwang, Young-Chang Joo, “Stress-induced surface damage and grain boundary characteristics of sputtered and electroplated copper thin films,” Acta Mater. 52, 2435 (2004).
    [96] Hiroyuki Hirakata, Masaya Kitazawa, Takayuki Kitamura, “Fatigue crack growth along interface between metal and ceramics submicron-thick films in inert environment,” Acta Mater. 54, 89 (2006).
    [97] G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, O. Kraft, “Length-scale-controlled fatigue mechanisms in thin copper films,” Acta Mater. 54, 3127 (2006).
    [98] Yong Zhou, Chun-Sheng Yang, Ji-An Chen, Gui-Fu Ding, Wen Ding, Li Wang, Ming-Jun Wang, Ya-Ming Zhang, Tai-Hua Zhang, “Measurement of Young's modulus and residual stress of copper film electroplated on silicon wafer,” Thin Solid Films 460, 175 (2004).
    [99] S. Menzel, S. Strehle, H. Wendrock, K. Wetzig, “Effect of Ag-alloying addition on the stress–temperature behavior of electroplated copper thin films,” Appl. Surf. Sci. 252, 211 (2005).
    [100] M. Hommel, O. Kraft, “Deformation behavior of thin copper films on deformable substrates,” Acta mater. 49, 3935 (2001).
    [101] Takao Hanabusa, Kazuya Kusaka, Osami Sakata, “Residual stress and thermal stress observation in thin copper films,” Thin Solid Films 459, 245 (2004).
    [102] H.M. Choi, S.K. Choi, O. Anderson, K. Bange, “Influence of film density on residual stress and resistivity for Cu thin films deposited by bias sputtering,” Thin Solid Films 358, 202 (2000).
    [103] R.-M. Keller, S. P. Baker, E. Arzt, “Stress–temperature behavior of unpassivated thin copper films,” Acta Mater. 47, 415 (1999).
    [104] C. Friesen, S. C. Seel, C. V. Thompson, “Reversible stress changes at all stages of Volmer–Weber film growth,” J. Appl. Phys. 95, 1011 (2004).
    [105] Denis Saraev, Ronald E. Miller, “Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings,” Acta Mater. 54, 33 (2006).
    [106] Chan-Yeup Chung, Yong-Chae Chung, “Molecular dynamics simulation of nano-scale Fe–Al thin film growth,” Mater. Lett. 60, 1063 (2006).
    [107] M. Rauf Gungor, Dimitrios Maroudas, “Atomistic mechanisms of strain relaxation due to ductile void growth in ultrathin films of face-centered-cubic metals,” J. Appl. Phys. 97, 113527 (2005).
    [108] P. Klein, B. Gottwald, T. Frauenheim, C. Khler, A. Gemmler, “Residual stresses modelled by MD simulation applied to PVD DC sputter deposition,” Surf. Coat. Technol. 200, 1600 (2005).
    [109] G.K. Pearce, N.A. Marks, D.R. McKenzie, M.M.M. Bilek, “Molecular dynamics simulation of the thermal spike in amorphous carbon thin films,” Diamond Relat. Mater. 14, 921 (2005).
    [110] Anna Machov, “Residual stress in Fe–Cu alloys at 0 and 600 K,” Comput. Mater. Sci. 24, 535 (2002).
    [111] Sulin Zhang, Harley T. Johnson, Gregory J. Wagner, Wing Kam Liu, K. Jimmy Hsia, “Stress generation mechanisms in carbon thin films grown by ion-beam deposition,” Acta Mater. 51, 5211 (2003).
    [112] N. A. Marks, D. R. McKenzie, B. A. Pailthorpe, “Molecular-dynamics study of compressive stress generation,” Phys. Rev. B 53, 4117 (1996).
    [113] Y. Yue, Y.K. Ho, Z.Y. Pan, R.W. Lee, Z.Y. Man, j. Xie, “Enhanced atomic mobility in pulsed laser deposition of Cu films,” Phys. Lett. A 235, 267 (1997).
    [114] G.H. Gilmer, M.H. Grabow, A.F. Bakker, “Modeling of epitaxial growth,” Mater. Sci. Eng. B 6, 101 (1990).
    [115] C.M. Gilmore, J.A. Sprague, “Molecular-dynamics simulation of the energetic deposition of Ag thin films,” Phys. Rev. B 44, 8950 (1991).
    [116] Shin-Pon Ju, Cheng-I Weng, Jee-Gong Chang, Chi-Chuan Hwang, “A molecular dynamics study of deposition rate dependence of film morphology in the sputtering process,” Surf. Coat. Technol. 149, 135 (2002).
    [117] J. W. Evans, D. E. Sanders, P. A. Thiel, A. E. DePristo, “Low-temperature epitaxial growth of thin metal films,” Phys. Rev. B 41, 5410 (1990).
    [118] M. Moseler, O. Rattunde, J. Nordiek, H. Haberland, “The growth dynamics of energetic cluster impact films,” Comput. Mater. Sci. 10, 452 (1998).
    [119] J. E. Lennard-Jones, “The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.) 106A (1924) 441; “The Determination of Molecular Fields. II. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.) 106A, 463 (1924).
    [120] M.S. Daw, M.I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Phys. Rev. Lett. 50, 1285 (1983).
    [121] M.S. Daw, M.I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B 29, 6443 (1984).
    [122] R. A. Johnson, “Analytic Nearest-Neighbor Model for FCC Metals,” Phys. Rev. B 37, 3924 (1988).
    [123] F. Cleri, V. Rosata, “Tight-binding potentials for transition metals and alloys,” Phys. Rev. B 48, 22 (1993).
    [124] F. H. Stillinger, T. A. Weber, “Computer simulation of local order in condensed phases of silicon,” Phys. Rev. B 31, 5262 (1985).
    [125] H. Hkkinen, M. Manninen, “The Effective-Medium Theory beyond the Nearest-Neighbour Interaction,” J. Phys. Condens. Matter 1, 9765 (1989).
    [126] K. W. Jacobsen, “Bonding in Metallic Systems: An Effective-Medium Approach,” Comments Cond. Mat. Phys. 14, 129 (1988).
    [127] S. Nos, M. L. Klein, “Constant pressure molecular dynamics for molecular systems,” Mol. Phys. 50, 1055 (1983).
    [128] S. Nos, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81, 511 (1984).
    [129] W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A 31, 1695 (1985).
    [130] G. J. Martyna, M. E. Tuckerman, M. L. Klein, “Nos-Hoover chains: the canonical ensemble via continuous dynamics,” J. Chem. Phys. 97, 2635 (1992).
    [131] H. C. Andersen, “Molecular dynamics simulations at constant pressure and/or temoerature,” J. Chem. Phys. 72, 2384 (1980).
    [132] M. Parrinllo, A. Rahman, “Polymorphic transitions in single crystal: a new molecular dynamics method,” J. Appl. Phys. 52, 7182 (1981).
    [133] W. G. Hoover, “Constant-pressure equations of motion,” Phys. Rev. A 34, 2499 (1986).
    [134] Furio Ercolessi, “A molecular dynamics primer,” Spring College in Computational Physics, ICTP, Trieste, June 1997.
    (http://www.ud.infn.it/~ercolessi/md/md/)
    [135] N. Miyazaki, Y. Shiozaki, “Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method,” JSME, Series A 39, 606 (1996).
    [136] Xin-Gang Liang, Bo Shi, “Two-dimensional molecular dynamics simulation of the thermal conductance of superlattices,” Mater. Sci. Eng. A 292, 198 (2000).
    [137] J. Giergiel, J. Shen, J. Woltersdorf, A. Kirilyuk, J. Kirschner, “Growth and morphology of ultrathin Fe films on Cu(001),” Phys. Rev. B 52, 8528 (1995).
    [138] Sulin Zhang, Greg Wagner, Sergey N. Medyanik, Wing-Kam Liu, Yuan-Hsin Yu, Yip-Wah Chung, “Experimental and molecular dynamics simulation studies of friction behavior of hydrogenated carbon films,” Surf. Coat. Technol. 177-178, 818 (2004).

    下載圖示 校內:立即公開
    校外:2006-08-28公開
    QR CODE