簡易檢索 / 詳目顯示

研究生: 許致齊
Hsu, Chih-Chi
論文名稱: 以質子雙環分佈函數求波不穩定度之解析與數值解
Analytical and Numerical Solutions of Wave Instabilities for Proton Two-ring Distribution Function
指導教授: 談永頤
Tam, Wing-Yee
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 94
中文關鍵詞: 動力學線性色散方程式不穩定度
外文關鍵詞: kinetic linear dispersion relation, instability
相關次數: 點閱:123下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般認為快速磁聲波(fast magnetosonic waves)在靠近赤道平面上垂直於周遭磁場的方向上傳遞。而這磁聲波的不穩定度事件目前被視為可能由離子速度環狀分佈所激發。為了去研究這個事件的特性,常使用動力學線性色散方程式(kinetic linear dispersion relation)去討論波函數的頻率波長關係(ω=ω_r+ω_i i v.s. k ⃑),此處將頻率劃分為實部及虛部來討論。在此,採用了無環、單環和雙環三種質子垂直速度環分佈函數,分別由Maxwellian函數加上0個、1個和3個漂移bi-Maxwellian函數組成。在平行方向上的波長為0的情況下我們利用圖解和數值方法研究波色散關係,方法包含contour plots和Newton’s method來找出每個分佈波函數的色散關係。我們從推導的色散關係可以發現在雙環分佈的情況下找到比單環分佈還多一個不穩定度峰值,並且發現雙環分佈情況下的波長範圍來得更大。此外還有更多關於波極化的詳細分析,如相位差、電場發展和相速。最後從相速的範圍對應到分佈函數對速度的正梯度的關係找出不同不穩定波的極化電場種類。

    Fast magnetosonic waves are considered to propagate in the direction perpendicular to the ambient magnetic field (B_0 ) ⃑ near the equatorial plane (k ⃑⊥(B_0 ) ⃑, where k ⃑ is a wave vector). The instabilities of these waves are recently regarded as being excited by the ion velocity ring distributions. In order to study the properties of such events, kinetic linear dispersion relations are used to discuss the relations between the frequency ω=ω_r+ω_i i and the wave number k ⃑, where the real and imaginary parts of the frequency are indicated by ω_r and ω_i. Three types of ring distributions in perpendicular velocity f_p (v) are adopted: zero-ring, one-ring, and two-ring distribution function. These are generated by superposing 0, 1, and 3 drift bi-Maxwellian distribution functions on a thermal Maxwellian distribution, respectively. Under the limit k_∥=0, we apply both graphical and numerical methods to the dispersion relation, including contour plots and Newton’s method, to obtain the approximate solutions of ω vs. k for each distribution function. From the derived dispersion relations, we find instability peaks (i.e., ω_i peaks) for the two-ring distribution with an extra peak than the one-ring distribution function. Further detail analysis on the wave polarization is implemented, including the phase difference α, the evolution of the electric field, and the phase velocity ω/k corresponding to the positive gradient of the proton velocity distribution functions (〖∂f〗_p (v))/∂v>0 for the unstable waves, different kinds of the polarization with the electric field evolution due to the range of ω/k are found.

    CONTENTS 摘要 i Abstract ii 誌謝 iii CONTENTS iv LIST OF FIGURES v Chapter 1 Introduction 1 1.1 Fast Magnetosonic Waves 1 1.2 Motivation 3 Chapter 2 Kinetic Theory of Plasma Waves 5 2.1 The Vlasov Equation 5 2.2 The Perturbed Distribution f_1 6 2.3 The Linearized Dispersion Relation 10 Chapter 3 Waves Propagating Perpendicular to B_0 14 3.1 The Distribution Function 14 3.2 The Dispersion Relation (k_∥=0) 16 Chapter 4 Numerical Method and Results 24 4.1 Contour Plot 24 4.2 Newton’s Method 25 4.3 Results 27 Chapter 5 Summary 60 References 62 Appendix I 63 Appendix II 78

    Chen, L., R. M. Thorne, V. K. Jordanova, and R. B. Home (2010), Global simulation of magnetosonic wave instability in the storm time magnetosphere, J. Geophysical. Res. 115. A11222.
    Gary, S. P., K. Liu, and D. Winske (2011), Bernstein instability driven by suprathermal protons in the ring current, J. Geophysical. Res. 116. A08215.
    Gurnett, D. A. (1976), Plasma Wave Interactions With Energetic Ions Near the Magnetic Equator, American. Geophysical. Union. 2765-2770.
    Newberger, B. S. (1982), New sum rule for products of Bessel functions with application to plasma physics, J. Math. Phys. 23. 1278-1281.
    Perraut, S., A. Roux, P. Robert, and R. Gendrin (1982), A Systematic Study of ULF Waves Above F_(H^+ ) From GEOS 1 and 2 Measurements and Their Relations With Proton Ring Distributions, J. Geophysical. Res. 87. 6219-6236.
    Russell, C.T., R.E. Holzer, and E.J. Smith (1970), OGO3 Observations of ELF Noise in the Magnetoshpere, 2. The Nature of the Equatorial Noise, J. Geophysical. Res. 75. 755-768.
    Thorne, R. M. (2010), Radiation belt dynamics: The importance of wave particle interactions, J. Geophysical. Res. 37. L22107.

    下載圖示 校內:2021-08-30公開
    校外:2021-08-30公開
    QR CODE