簡易檢索 / 詳目顯示

研究生: 施佳佑
Shih, Jia-You
論文名稱: 平甩功機之系統性開發
The Systematic Development of a Ping-Shuai-Gong Machine
指導教授: 田思齊
Tien, Szu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 107
中文關鍵詞: 平甩功機機構設計適應控制有限脈衝響應濾波器遞迴最小平方參數估測
外文關鍵詞: Ping-Shuai-Gong machine, mechanism design, adaptive control, finite-impulse-response filter, recursive-least-squares parameter estimation
相關次數: 點閱:200下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的在開發一個六分之一比例之平甩功機,並以同比例之人體模型為受試者進行試驗,使其做出標準平甩功動作。該動作可分為上肢及下肢,乃經由影像偵測設備紀錄實際的平甩功動作所得。為實現此動作軌跡,我們分別設計上下肢機構。上肢機構設計成單馬達帶動兩組四連桿曲柄搖桿機構,以達到搖擺運動的目的;下肢機構設計成彈簧加配重機構,以確保使用者安全同時減輕彈簧及馬達的負擔。在控制的方法上,以有限脈衝響應 (FIR) 濾波器為模型進行遞迴最小平方 (RLS) 適應性參數估測,並把估測所得之反系統模型作為前饋控制器配合比例-積分-微分 (PID) 回授控制器進行控制。該控制方式能有效解決建模誤差以及使用者不同等的系統不確定性。此外,對於干擾造成的影響也能控制在理想範圍內。實驗結果顯示,使用本論文建議之控制方法,可有效使本研究開發之平甩功機做出預計之平甩功動作。

    The main purpose of this study is to develop a 1:6 ratio Ping-Shuai-Gong (PSG) machine, which can realize standard actions of PSG with a human mannequin in the corresponding scale. The overall PSG actions of an experimenter are recorded with image acquisition equipments first and then divided into upper and lower limb part actions. In order to achieve the overall actions, we design the upper and lower limb mechanisms separately. The upper limb mechanism consists of two sets of four-bar-linkage mechanism driven by a single motor for swing movement. The lower limb mechanism consists of springs and counterweight to not only guarantee users' safety but also reduce loading on the spring and driving motor. For the control method, recursive-least-squares (RLS) adaptive algorithm is used to estimate parameters of a finite-impulse-response (FIR) filter for system modeling. Besides, the inverse-system model from estimation is used as the feedforward controller, which is augmented with a PID feedback controller to complete the control task. This control method can effectively solve problems from modeling errors and other uncertainties such as different users. Furthermore, the impact of disturbance can be limited to a tolerable range. Experimental results show that this PSG machine can achieve expected PSG actions with the propose control method.

    圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 符號表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 第二章問題描述與系統規劃. . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 上下肢動作規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 上肢. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 下肢. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 設計規格與特色. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 第三章系統機構設計與分析. . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 上肢四連桿機構設計. . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.1 設計原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.2 設計與分析結果. . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 下肢設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.1 設計原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.2 設計結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 第四章控制策略與模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1 控制器設計理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.1 適應性濾波器. . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 控制器設計及模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.1 上肢系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.2 下肢系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 第五章實驗設備與結果討論. . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1 實驗設備與架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2 實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2.1 上肢系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2.2 下肢系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 第六章結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 附錄A 單連桿與四連桿配重分析. . . . . . . . . . . . . . . . . . . . . . . . 103 附錄B 彈簧設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    [1] Microsoft Corporation. Kinect for windows v2. https://developer.
    microsoft.com/zh-tw/windows/kinect.
    [2] J. J. Uicker, G. R. Pennock, and J. E. Shigley. Theory of Machines and
    Mechanisms. Oxford University Press, 2010.
    [3] Bernard Widrow and Eugene Walach. Adaptive Inverse Control: A Signal
    Processing Approach, Reissue Edition. Wiley-IEEE Press, 2007.
    [4] Chien-Min Cheng, Yi-Chen Chung, and Shin-Tho Huang. Analysis of 30
    minutes monitoring of aura and chakra energy before and after 10 minutes
    ping-shuai gong movement: A female elderly case study. Sports academic
    group joint annual conference, 2009.
    [5] Roger Jahnke, OMD, Linda Larkey, PhD, Carol Rogers, Jennifer Etnier, PhD,
    and Fang Lin. A comprehensive review of health bene ts of qigong and tai
    chi. SAGE journals, 24(6):e1{e25, July 2010.
    [6] C. M. Cheng, C. H. Huang, W. C. Ting, and C. M. Wu. The impact of
    qigong regimen exercises on mood and sleep quality. The Asian Sleep Research
    Society Congress 2012, 2012. Taipei, Taiwan.
    [7] Chin-Hsiang Chien, Julia J. Tsuei, Si-Chen Lee, Yu-Chih Huang, and Yau-
    Huei Wei. E ect of emitted bioenergy on biochemical functions of cells. Ame-
    rican journal of Chinese Medicine, 19(3-4):285{292, 2 1991.
    [8] Darren E.R. Warburton, Crystal Whitney Nicol and Shannon S.D. Bredin.
    Health bene ts of physical activity: the evidence. Canadian Medical Associ-
    ation Journal, 174(6):801{809, March 2006.
    [9] Frank J. Penedo and Jason R. Dahn. Exercise and well-being: a review of
    mental and physical health bene ts associated with physical activity. Current
    Opinion in Psychiatry, 18(2):189{193, March 2005.
    [10] Y. Doi. Exercise apparatus for restoration of function. J. Soc. Biomech.,
    17(2):99{105, 1993.
    [11] T. Noritsugu and T. Tanaka. Application of rubber arti cial muscle manipulator
    as a rehabilitation robot. In ASME Transactions on Mechatronics,
    volume 1, pages 259 { 267. IEEE, Dec 1997.
    [12] Faa-Jeng Lin, Po-Huan Chou and Chin-Sheng Chen. DSP-Based Cross-
    Coupled Synchronous Control for Dual Linear Motors via Intelligent Complementary
    Sliding Mode Control. In IEEE Transactions on Industrial Elec-
    tronics, volume 59, pages 1061{1073. IEEE, Feb 2012.
    [13] J. G. Thompson and X. Zhang. Coordinated
    ight control along a complex

    ight-path. In 19th Digital Avionics Systems Conference, volume 1, pages
    2A6/1 { 2A6/7, Philadelphia, PA, USA, USA, Oct 2000. IEEE.
    [14] A. Russo, R. Sinatra, and Fengfeng Xi. Static balancing of parallel robots.
    In Mechanism and Machine Theory, volume 40, pages 191{202. Elsevier, Feb
    2005.
    [15] K. Koser. A cam mechanism for gravity-balancing. In Mechanics Research
    Communications, volume 36, pages 523{530. Elsevier, June 2009.
    [16] J. L. Herder. Design of spring force compensation systems. In Mechanism
    and Machine Theory, volume 33, pages 151{161. Elsevier, Jan-Feb 1998.
    [17] D. Surdilovic and R. Bernhardt. STRING-MAN: a new wire robot for gait rehabilitation.
    In International Conference on Robotics and Automation, pages
    2031{2036, New Orleans, LA, USA, USA, April 2004. IEEE.
    [18] Saso Jezernik, Ruben G. V. Wassink, and Thierry Keller. Sliding Mode
    Closed-Loop Control of FES: Controlling the Shank Movement. In IEEE
    Transactions on Biomedical Engineering, volume 5, pages 263{272. IEEE,
    Feb 2004.
    [19] Qian Bi and Can jun Yang. Human-machine interaction force control: using
    a model-referenced adaptive impedance device to control an index nger exoskeleton.
    In Journal of Zhejiang University SCIENCE C, volume 15, page
    275{283, April 2014.
    [20] Richardson R., Levesley M.C., Brown M. and Walker P. Impedance control
    for a pneumatic robot-based around poleplacement, joint space controllers. In
    Control Engineering Practise, volume 13, page 291{303. Elsevier, Feb 2005.
    [21] J.L. Chu. Model-based adaptive control for precision afm scan. Master's
    thesis, National Cheng Kung University, 2014.
    [22] B Widrow and E Walach. Adaptive inverse control, reissue edition: a signal processing approach. John Wiley and Sons, 2007.
    [23] F.S. Li. Introduction to ping-shuai-gong. http://www.meimen.org/.
    [24] R.S. Hartenberg and J. Denavit. Kinematic synthesis of linkages. New York:
    McGraw-Hill, 1964.
    [25] Colin MacLaurin. A Treatise of Algebra. Printed for A. Millar and J. Nourse,
    1748.
    [26] Jr. Robert A. Hall. Notes on Mechanism Analysis. Waveland Press, Prospect
    Heights, Illinois, USA., 1986.
    [27] F. Golnaraghi and B. C. Kuo. Automatic Control Systems. Wiley, 2009.
    [28] Karl Johan Astrom and Bjorn Wittenmark. Adaptive Control. Courier Corporation,
    2007.
    [29] William T. Vetterling William H. Press, Saul A. Teukolsky and Brian P.
    Flannery. Numerical Recipes: The Art of Scienti c Computing. Cambridge
    University Press, 2007.
    [30] Y.H. Wu. The study on synchronized motion control in transients for multiactuator
    systems. Master's thesis, National Cheng Kung University, 2016.
    [31] Texas Instruments. TMS320F2810,TMS320F2811,TMS320F2812,
    TMS320C2810,TMS320C2811,TMS320C2812 Digital Signal Processors
    Data Manual. http://www.ti.com/lit/ds/symlink/, May 2012.
    [32] Texas Instruments. C281x C/C++ Header Files and Peripheral Examples
    (including F281x). http://www.ti.com/general/docs/lit/, Aug 2009.
    [33] STMicroelectronics. L298. https://www.st.com/content/st_com/en/
    products/motor-drivers/brushed-dc-motor-drivers/l298.html, 2000.
    [34] Pololul. 25D mm Metal Gearmotors HP 6V with 48 CPR Encoder. https:
    //www.pololu.com/category/115/25d-mm-metal-gearmotors, 2016.
    [35] HIWIN. Single Axis Robot Technical Information. http://www.hiwin.tw/
    download/tech_doc/sar/Single_Axis_Robot-(E).pdf, 2016.

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE