簡易檢索 / 詳目顯示

研究生: 楊博淳
Yang, Po-Chun
論文名稱: 以乙烯氧鍵吸附量測定蒙脫石表面積之研究
Determination of surface areas of montmorillonite by PEO (Polyethylene oxide) adsorption in aqueous solution
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 82
中文關鍵詞: 黏土蒙脫石表面積乙烯氧化物
外文關鍵詞: PEO, surface area, montmorillonite, clay
相關次數: 點閱:125下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前測定黏土表面積的方法主要有BET法(Branouer, Emmet and Teller)、EG法(Ethylene Glycol)、EGME法(Ethylene Glycol Monoethyl Ether)與MB法(Methylene Blue);BET法是在黏土脫水環境下進行,無法測得膨潤後實際表面積,而EG、EGME其測值受到黏土層間交換陽離子種類影響甚巨,MB法雖為水相吸附,但其測值亦受黏土CEC(Cation Exchange Capacity)之影響。因此,在水相中利用聚乙烯氧化物(Polyethylene oxide,PEO)吸附測定膨脹性黏土的表面積成為我們探討的重點。本研究主要在探討利用乙烯氧鍵(EO)的吸附來決定膨脹性黏土礦物表面積的可行性。
    由實驗結果顯示,含乙烯氧鍵的聚合物(PEO)會與水中的膨脹性黏土表面產生吸附,且隨著乙烯氧聚合物分子量越高,單位克數膨脹型黏土對PEO吸附量達到一定值,並配合X光繞射分析(XRD)可觀察出PEO與水中的膨脹性黏土表面產生單層吸附且吸附之PEO分子呈平坦的train型構造。所以,可由單一乙烯氧鍵所佔的面積,進而計算出膨脹性黏土礦物的表面積。實驗得到A、B、C及D蒙脫石的表面積分別為337 m2/g、116 m2/g、187 m2/g和198 m2/g。實驗中也發現,膨脹性黏土礦物在水中的總表面積與其陽離子交換能力(CEC)無關但與粒徑大小(Particle size)有關。綜合以上可知,利用PEO吸附量來測定膨脹性黏土礦物是可行的。

    The traditional methods of surface area measurements are BET method (Branouer, Emmet and Teller method), EG method (Ethylene glycol method), EGME method (Ethylene glycol monoethyl ether method) and MB method (Methylene blue method). BET method has been recognized that it can not measure the total surface areas of expandable clays due to nitrogen does not interact with or have access to the interlayer surfaces. The surface area measurement result of EG, EGME methods are influenced by the species of exchangeable cation within clay. MB method has been used to measure surface area of clay in solution, still the result is influenced by CEC (Cation Exchange Capacity) of clays samples. The determination of surface areas of expandable clay by PEO (Polyethylene oxide) adsorption in aqueous solution is the main research topic in this study. Our discussion is focus on the feasibility of using ethylene oxide chain to determine the surface areas of expandable clay.
    Experimental results indicate that the ethylene oxide chain of PEO is coating on the interlamellar space of montmorillonite fully, which is composed predominately of a SiO2 (Si tetrahedral sheets) surface. Consequently, we can use the area of a single ethylene oxide chain unit to calculate the surface area of expandable clay. The surface areas of montmorillonite sample A, B, C, D determined by PEO adsorption method were 337 m2/g, 116 m2/g, 187 m2/g and 198 m2/g respectively. In this study, we also found that the surface areas of expandable clays in aqueous solution are related to particle size but not to CEC. Conclusively, we found that PEO adsorption is suitable way to measure the surface area expandable clays in solution.

    摘要 I Abstract II 誌謝 III 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 3 第二章 理論基礎 4 2-1 黏土礦物的基本構造及性質 4 2-1.1 高嶺土(Kaolinite)的物化特性 8 2-1.2 蒙脫石的性質 9 2-2 界面活性劑的定義及性質 12 2-2.1 PEO(Polyethylene Oxide)性質 13 2-3 表面吸附作用 15 2-3.1 影響吸附之因素 18 2-3.2 等溫吸附線 19 2-4 陽離子交換 22 2-5 黏土表面積的測定 24 第三章 實驗方法與步驟 25 3-1 實驗流程 25 3-2 實驗材料 25 3-2.1 黏土 25 3-2.2 界面活性劑 27 3-2.3 其他試劑 28 3-3 實驗設備 29 3-4 實驗步驟 30 3-4.1 黏土對PEO吸附平衡實驗 30 3-4.2 陽離子變化對黏土吸附PEO之影響 32 3-4.3 pH值變化對黏土吸附PEO之影響 32 3-5 分析方法 34 第四章 結果與討論 38 4-1 測定單一-(CH2-CH2-O)-鍵的表面積 38 4-1.1 水洗前後高嶺土對不同分子量PEO吸附關係 38 4-1.2 水洗前後高嶺土的BET表面積分析 39 4-1.3 單一-(CH2-CH2-O)-鍵表面積之計算 42 4-2 PEO吸附實驗中影響因子之探討 43 4-2.1 動力吸附實驗 43 4-2.2 溶液離子強度對PEO吸附性的影響 44 4-2.3 溶液pH值對PEO吸附性的影響 45 4-3 PEO吸附量對蒙脫石礦物表面積的測定 46 4-3.1 蒙脫石對PEO等溫吸附線 46 4-3.2 X光繞射分析 57 4-3.3 CEC對蒙脫石在水中表面積之影響 61 4-3.4 粒徑大小對蒙脫石表面積之影響 63 4-4 以PEO吸附量測定水中黏土表面積之步驟 65 第五章 結論 66 參考文獻 67 附錄A 等溫吸附實驗數據 71 附錄B 史脫克(stokes)粒徑分佈數據 81 附錄C 儀器之檢量線 82

    1. 張仲民, 普通土壤學, 國立編譯館, 1988.
    2. 劉慧玲, “台東樟原黏土資源之有機黏土備製研究”, 國立成功大學資源工程系碩士論文, 2001.
    3. Cary T. Chiou and David W. Rutherford, “Sorption of N2 and EGME Vapors on Some Soils, Clays, and Mineral Oxides and Determination of Sample Surface Areas by Use of Sorption Data”, Environ. Sci. Technol., Vol. 27, No.8, 1993.
    4. 閻誠麟, “不同類型界面活性劑對黏土礦物吸附非離子有機污染物之影響”, 國立中央大學環境工程研究所碩士論文, 1997.
    5. 朱海帆譯, 土壤學, 正中書局, 1974.
    6. 經濟部礦業司, 台灣礦業, 第六卷, 第四期, pp.35-78.
    7. 黃秋卿, “不同特性有機質對鄰-二甲苯、苯及酚吸附現象之研究”, 國立屏東科技大學環境工程與科學系碩士學位論文, 2000.
    8. Koksal, E., Ramachandran, R., Somasundaran, P., Maltesh, C., “Flocculation of oxides using polyethylene oxide”, Powder Technol. 62, pp.253-259, 1990.
    9. Yun-Hwei Shen, “Sorption of non-ionic surfactants to soil: the role of soil mineral composition”, Chemosphere, 41, pp.711-716, 2000.
    10. 蘇佳琪, “氧化鋁、氧化鐵插層蒙脫土吸附水中天然有機物之研究”, 國立成功大學資源工程系碩士論文, 2002.
    11. 潘秋金, “以陽離子界面活性劑合成有機黏土吸附有機化合物之研究”, 國立成功大學資源工程系碩士論文, 2002.
    12. 吳景雅, “向陽絹雲母之離子交換性質研究”, 國立成功大學資源工程學系碩士論文, 2000.
    13. 趙杏媛、張有瑜, 黏土礦物與黏土礦物分析, 海洋出版社.
    14. 趙承琛, 界面科學特論, 復文書局, 1988.
    15. 郭俊智, “界面活性劑於土壤/水系統中對土壤有機質特性與非離子性有機化合物分佈行為之影響”, 國立中央大學環境工程研究所碩士論文.
    16. 趙承琛, 界面科學基礎, 復文書局, 1991.
    17. 張有義、郭蘭生編譯, 膠體及界面化學入門, 高立圖書有限公司, 1997.
    18. 趙承琛, 界面活性劑化學, 復文書局, 1990.
    19. S. Chibowski and M. Paszkiewicz, “Influence of the Molecular Weight of Polyethylene Glycol and Polyethylene Oxide on the Adsorption and Electrochemical Properties on the Tiania/Electrolyte Solution Interface”, Adsorption Science & Technology, Vol. 17,pp. 845-854.
    20. J. Rubio and Kitchener, “Potential of Polyethylene oxide solution as a fugitive dust palliative,” 1976.
    21. Yun-Hwei Shen, “Estimation of surface area of montmorillonite by ethylene oxide chain adsorption”, Chemosphere, Vol. 48, No.5, PP.1078-1079, 2002.
    22. Giles, C.H., T.H. Macewan, S.N. Nakhwa and D. Simth, “Studies in Adsorption. Part XI. A System of Classification of Adsorption Isotherms and Its Uses in Diagnosis of adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids”, J.Chem. Soc., pp.3973-3993, 1960.
    23. A. Kellomäki, P. Nieminen and Ritamäki, “Sorption of Ethylene Glycol Monoethyl Ether (EGME) on Homoionic Montmorillonites”, Clay Minerals, Vol.22, pp.297-303, 1987.
    24. Pham Thi Hang and G. B. Brindley, “Methylene Blue Absorption by Clay Minerals. Determination of Surface Areas and Cation Exchange Capacities (Clay-Organic Studies XVIII)”, Clays and Clay Minerals, Vol. 18, pp. 203-212, 1970.
    25. 陳陵援, 儀器分析, 三民書局, 1985.
    26. Scheutjens, J.M.H.M., Fleer, G.J., “Statistical theory of the adsorption of interacting chain molecules. 1. Partition function, segment density distribution, and adsorption isotherms”, J. Phys. Chem. 83, pp.1619-1628, 1979.
    27. Scheutjens, J.M.H.M., Fleer, G.J., “Statistical theory of the adsorption of interacting chain molecules. 2. Train, loop, and tail size distribution”, J. Phys. Chem. 84, pp.178-189, 1980.
    28. R. Thomas Podoll, Katherine C. Irwin, and Sheryl Brendlinger, “Sorption of Water-Soluble Oligomers on Sediments”, Environ. Sci. Technol., Vol. 21, pp. 562-568, 1987.
    29. P. Somasundaran, E.D. Shell, Edward Fu and Qun Xu, “Effect of adsorption of non-ionic-anionic surfactant mixture on silica-liquid interfacial properties”, Colloids and Surfaces, Vol. 63, pp. 49~54, 1992.
    30. Miguel G. Neumann, Fergus Gessner, Carla C. Schmitt, and Rogerio Sartori, “Influence of the Layer Charge and Clay Particle Size on the Interactions between the Cationic Dye Methylene Blue and Clays in an Aqueous Suspension”, Journal of Colloid and Interface Science, Vol. 255, pp. 254-259, 2002.
    31. Louis Mercier and Christian Detellier, “Intercalation of Tetraalkylammonium Cations Into Smectites and Its Application to Internal Surface Area Measurments”, Clays and clay Minerals, Vol. 42, No. 1, pp.71-76,1994.
    32. TsuTomu Sato, Takashi Watanabe, and Ryohei Otsuka, “Effects of Layer Charge, Charge Location, and Energy Change on Expansion Properties of Dioctahedral Smectites”, clays and clay Minerals.,, Vol. 40, No. 1, pp.103~113, 1992.

    下載圖示 校內:2004-08-21公開
    校外:2004-08-21公開
    QR CODE