簡易檢索 / 詳目顯示

研究生: 籃昱任
Lan, Yu-Jen
論文名稱: 自主無人水上載具操控設計
Maneuvering Control Design of Unmanned Surface Vehicles with Uncertainties and Disturbances
指導教授: 陳永裕
Chen, Yung-Yue
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 93
中文關鍵詞: 無人水面載具追蹤與操縱H∞/H2混合型PID類控制器極點區域約束控制力道約束適應性類神經控制滑動平面控制線性矩陣不等式
外文關鍵詞: Unmanned surface vehicle, Path maneuvering, Mixed H∞/H2 PID type controller, Regional pole constraints, Control action constraints, Adaptive neural network control, Sliding-mode control, Linear matrix inequality (LMI)
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 ii Abstract iii 誌謝 iv Contents v List of Tables viii List of Figures ix Nomenclatures xi Chapter 1 Introduction and Literature Review 1 Chapter 2 Model of USV 7 2.1 Reference Frame 7 2.1.1 Earth-Centered Frame 7 2.1.2 Geographic Frame (Earth Frame) 8 2.1.3 Body-Fixed Frame 9 2.2 Model of USV in Body-Fixed Frame Prospective 10 2.3 Model of USV in Earth Frame (Geographic Frame) Perspective 11 2.4 Model of Environmental Disturbances 12 2.4.1 Ocean Current 12 2.4.2 Wind 15 2.4.3 Wave 17 Chapter 3 Guidance and Trajectory Generator 22 3.1 Guidance System 22 3.1 Trajectory Generator 22 Chapter 4 Control Design Objectives of USV and Problem Formulation 29 4.1 Tracking Error Dynamic of USV 29 4.2 Refinement on Tracking Error of Heading Angle 31 4.3 Tracking Performance and Constraint 33 4.2.1 Tracking Performance 34 4.2.2 Tracking performance 34 4.2.3 Regional Pole Constraints 35 4.2.3 Constraints on Magnitude of Control Action 35 Chapter 5 Maneuvering Control Design of USV 36 5.1 Neural Network Compensator and Sliding-mode Compensator 36 5.2 Maneuvering Control Design via LMI Formulation 41 5.2.1 Control Design with Tracking Performance 41 5.2.2 Control Design with Tracking Performance 43 5.2.3 Control Design with Regional Pole Constraints 46 5.2.4 Control Design with Control Action Constraints 47 5.3 Multi-objective PID type Maneuvering Control Design of USV with Uncertainty and Disturbance 50 5.3.1 PID type Maneuvering Control Design with Constraints 50 5.3.2 PID type Maneuvering Control Design with Constraints 50 Chapter 6 Power Allocation of USV 52 Chapter 7 Simulation and Result 55 7.1 Setting of Simulation 55 7.1.1 Setting of Unmanned Surface Vehicle 55 7.1.2 Setting of External Environment Disturbances 56 7.1.3 Setting of Desired Trajectory 56 7.1.4 Setting of Control Parameters 57 7.2 Result and Discussion 62 Chapter 8 Conclusion 78 Chapter 9 Future Work 79 Reference 84 Appendix I: Parameters of Unmanned Surface Vehicle 89 Appendix II: Parameters of Environmental Disturbance 90 Appendix III: Waypoints for Trajectory 92 Appendix IV: Parameters of Power Allocation and Inequality of Arc Tangent 93

    [1] M. Breivik, "Topics in guided motion control of marine vehicles," 2010.
    [2] S. Campbell, W. Naeem, and G. W. Irwin, "A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres," Annual Reviews in Control, vol. 36, no. 2, pp. 267-283, 2012.
    [3] G. N. Roberts and R. Sutton, Advances in unmanned marine vehicles. Iet, 2006.
    [4] Z. Liu, Y. Zhang, X. Yu, and C. Yuan, "Unmanned surface vehicles: An overview of developments and challenges," Annual Reviews in Control, vol. 41, pp. 71-93, 2016.
    [5] T. I. Fossen, "Guidance and control of ocean vehicles," University of Trondheim, Norway, Printed by John Wiley & Sons, Chichester, England, ISBN: 0 471 94113 1, Doctors Thesis, 1999.
    [6] T. I. Fossen, "Marine Control Systems–Guidance. Navigation, and Control of Ships, Rigs and Underwater Vehicles," Marine Cybernetics, Trondheim, Norway, Org. Number NO 985 195 005 MVA, www. marinecybernetics. com, ISBN: 82 92356 00 2, 2002.
    [7] T. I. Fossen, Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons, 2011.
    [8] W. He, S. S. Ge, B. V. E. How, and Y. S. Choo, Dynamics and control of mechanical systems in offshore engineering. Springer, 2014.
    [9] E. Alfaro-Cid, E. McGookin, D. Murray-Smith, and T. Fossen, "Genetic algorithms optimisation of decoupled Sliding Mode controllers: simulated and real results," Control Engineering Practice, vol. 13, no. 6, pp. 739-748, 2005.
    [10] R. Skjetne, "The maneuvering problem," NTNU, PhD-thesis, vol. 1, 2005.
    [11] N. Wang, Z. Sun, J. Yin, S.-F. Su, and S. Sharma, "Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances," IEEE Access, vol. 6, pp. 14059-14070, 2018.
    [12] L. C. McNinch, H. Ashrafiuon, and K. R. Muske, "Optimal specification of sliding mode control parameters for unmanned surface vessel systems," in 2009 American Control Conference, 2009: IEEE, pp. 2350-2355.
    [13] G. Zhang and X. Zhang, "Concise robust adaptive path-following control of underactuated ships using DSC and MLP," IEEE Journal of Oceanic Engineering, vol. 39, no. 4, pp. 685-694, 2013.
    [14] N. Wang, Z. Sun, J. Yin, Z. Zou, and S.-F. Su, "Fuzzy unknown observer-based robust adaptive path following control of underactuated surface vehicles subject to multiple unknowns," Ocean Engineering, vol. 176, pp. 57-64, 2019.
    [15] F. Del-Rio-Rivera, V. M. Ramírez-Rivera, A. Donaire, and J. Ferguson, "Robust Trajectory Tracking Control for Fully Actuated Marine Surface Vehicle," IEEE Access, vol. 8, pp. 223897-223904, 2020.
    [16] M. Chen and B. Jiang, "Adaptive control and constrained control allocation for overactuated ocean surface vessels," International Journal of Systems Science, vol. 44, no. 12, pp. 2295-2309, 2013.
    [17] Y. Qu, B. Xiao, Z. Fu, and D. Yuan, "Trajectory exponential tracking control of unmanned surface ships with external disturbance and system uncertainties," ISA transactions, vol. 78, pp. 47-55, 2018.
    [18] H. Qin, C. Li, Y. Sun, X. Li, Y. Du, and Z. Deng, "Finite-time trajectory tracking control of unmanned surface vessel with error constraints and input saturations," Journal of the Franklin Institute, vol. 357, no. 16, pp. 11472-11495, 2020.
    [19] N. Wang, X. Pan, and S.-F. Su, "Finite-time fault-tolerant trajectory tracking control of an autonomous surface vehicle," Journal of the Franklin Institute, vol. 357, no. 16, pp. 11114-11135, 2020.
    [20] Y. Hong, J. Huang, and Y. Xu, "On an output feedback finite-time stabilization problem," IEEE Transactions on Automatic Control, vol. 46, no. 2, pp. 305-309, 2001.
    [21] C.-S. Tseng and B.-S. Chen, "Multiobjective PID control design in uncertain robotic systems using neural network elimination scheme," IEEE transactions on systems, MAN, and cybernetics-Part A: Systems and humans, vol. 31, no. 6, pp. 632-644, 2001.
    [22] C. Scherer, P. Gahinet, and M. Chilali, "Multiobjective output-feedback control via LMI optimization," IEEE Transactions on automatic control, vol. 42, no. 7, pp. 896-911, 1997.
    [23] M. Chilali and P. Gahinet, "H/sub/spl infin//design with pole placement constraints: an lmi approach," IEEE Transactions on automatic control, vol. 41, no. 3, pp. 358-367, 1996.
    [24] M. Chilali, P. Gahinet, and P. Apkarian, "Robust pole placement in LMI regions," IEEE transactions on Automatic Control, vol. 44, no. 12, pp. 2257-2270, 1999.
    [25] T. Alamo, J. E. Normey-Rico, M. Arahal, D. Limon, and E. Camacho, "Introducing linear matrix inequalities in a control course," IFAC Proceedings Volumes, vol. 39, no. 6, pp. 205-210, 2006.
    [26] K. J. Åström and T. Hägglund, "The future of PID control," Control engineering practice, vol. 9, no. 11, pp. 1163-1175, 2001.
    [27] I. D. Díaz-Rodríguez, S. Han, and S. P. Bhattacharyya, Analytical design of PID controllers. Springer, 2019.
    [28] R. P. Borase, D. Maghade, S. Sondkar, and S. Pawar, "A review of PID control, tuning methods and applications," International Journal of Dynamics and Control, pp. 1-10, 2020.
    [29] J. G. Ziegler and N. B. Nichols, "Optimum settings for automatic controllers," trans. ASME, vol. 64, no. 11, 1942.
    [30] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory. SIAM, 1994.
    [31] A. N. P. Gahinet, A. J. Laub, and M. Chilali, "LMI Control Toolbox," ed: Natick, MA: The MathWorks, 1995.
    [32] J. T. Spooner and K. M. Passino, "Stable adaptive control using fuzzy systems and neural networks," IEEE Transactions on Fuzzy Systems, vol. 4, no. 3, pp. 339-359, 1996.
    [33] R. Ordonez, J. Zumberge, J. T. Spooner and K. M. Passino, "Adaptive fuzzy control: experiments and comparative analyses," IEEE Transactions on Fuzzy Systems, vol. 5, no. 2, pp. 167-188, 1997.

    無法下載圖示 校內:2026-08-18公開
    校外:2026-08-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE