| 研究生: |
張弘穎 Chang, Hung-Ying |
|---|---|
| 論文名稱: |
修飾檸檬酸與抗壞血酸於矽負極表面用於改善鋰離子電池循環穩定性 Citric acid and ascorbic acid as surface modifiers on silicon as high cycle stability anode material in Li ion battery |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 共同指導教授: |
張家欽
Chang, Chia-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 熱處理 、矽 、檸檬酸 、抗壞血酸 、修飾膜 、表面修飾 、負極材料 、鋰離子電池 |
| 外文關鍵詞: | heat treatment, silicon, citric acid, ascorbic acid, modification layer, surface modification, anode material, lithium ion batteries |
| 相關次數: | 點閱:124 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因近年來市場上對於鋰離子電池更高能量密度的需求,在負極材料中,矽具有極高的理論電容量(3580 mAh g-1),但因其在充放電過程中,會伴隨著巨大的體積變化,造成其初圈所形成的SEI膜不穩定,進而使其出現較低的庫倫效率與循環表現不佳的現象,故本研究透過將檸檬酸與抗壞血酸修飾於矽材表面,期望透過此兩種小分子能對矽材表面有更好的包覆性,並且形成較穩定的SEI膜。
將檸檬酸與抗壞血酸修飾於矽材表面的過程中可分成兩步驟,第一步是透過行星式球磨機將矽、抗壞血酸與檸檬酸進行混合,第二步則是藉由熱處理的方式使矽上的羥基與修飾分子上的羥基羧酸發生脫水反應形成鍵結,研究中主要探討熱處理溫度的改變對於修飾層之影響,並透過材料分析與電化學分析來對其進行深入探討。
本研究成功將檸檬酸與抗壞血酸修飾於矽活性材表面上,改善原始矽材前幾圈電容量大幅衰退的問題,並提升其循環穩定性。於材料分析中可觀察到隨著熱處理溫度越高,修飾層越薄,並當溫度高於300℃時,抗壞血酸會轉變成不利於形成穩定SEI膜的分子結構;電性分析中顯示M-Si 150℃經過100圈之充放電測試後,具有最佳的循環壽命表現,電容量為1787 mAh g-1;在快速2C充放電下,其同樣擁有最佳表現,電容量為593 mAh g-1。
We successfully modify citric acid and ascorbic acid on silicon surface via a simple planetary ball-milling and heat treatment without high cost and risk of environment pollutions. This study shows that heat treatment temperature significantly affect molecular structure in the modification layer and modification layer thickness. The observed electrochemical performance of M-Si 150℃ shows good cycling ability (1787 mAh g-1 with 75.8 % retention after 100 cycles). Thus, M-Si 150℃ as anode material performs better electrochemical properties.
[1] J. Lu, Z. Chen, F. Pan, Y. Cui, and K. Amine, "High-performance anode materials for rechargeable lithium-ion batteries," Electrochemical Energy Reviews, vol. 1, no. 1, pp. 35-53, 2018.
[2] G. Crabtree, E. Kocs, and L. Trahey, "The energy-storage frontier: Lithium-ion batteries and beyond," MRS Bulletin, vol. 40, no. 12, pp. 1067-1078, 2015.
[3] J. R. Dahn, T. Zheng, Y. Liu, and J. Xue, "Mechanisms for lithium insertion in carbonaceous materials," Science, vol. 270, no. 5236, pp. 590-593, 1995.
[4] C.-H. Wu, N.-W. Pu, Y.-M. Liu, C.-Y. Chen, Y.-Y. Peng, T.-Y. Cheng, M.-H. Lin, and M.-D. Ger, "Improving rate capability of lithium-ion batteries using holey graphene as the anode material," Journal of the Taiwan Institute of Chemical Engineers, vol. 80, pp. 511-517, 2017.
[5] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," carbon, vol. 45, no. 7, pp. 1558-1565, 2007.
[6] J. Li and J. Dahn, "An in situ X-ray diffraction study of the reaction of Li with crystalline Si," Journal of The Electrochemical Society, vol. 154, no. 3, pp. A156-A161, 2007.
[7] N. Liu, W. Li, M. Pasta, and Y. Cui, "Nanomaterials for electrochemical energy storage," Frontiers of Physics, vol. 9, no. 3, pp. 323-350, 2014.
[8] M. Winter and J. O. Besenhard, "Electrochemical lithiation of tin and tin-based intermetallics and composites," Electrochimica Acta, vol. 45, no. 1, pp. 31-50, 1999.
[9] C. K. Chan, X. F. Zhang, and Y. Cui, "High Capacity Li Ion Battery Anodes Using Ge Nanowires," Nano Letters, vol. 8, no. 1, pp. 307-309, 2008.
[10] J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, "Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions," Adv Mater, vol. 22, no. 35, pp. E170-92, 2010.
[11] Y. Jin, B. Zhu, Z. Lu, N. Liu, and J. Zhu, "Challenges and recent progress in the development of Si anodes for lithium‐ion battery," Advanced Energy Materials, vol. 7, no. 23, p. 1700715, 2017.
[12] X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, "Size-dependent fracture of silicon nanoparticles during lithiation," ACS nano, vol. 6, no. 2, pp. 1522-1531, 2012.
[13] J. W. Choi and D. Aurbach, "Promise and reality of post-lithium-ion batteries with high energy densities," Nature Reviews Materials, vol. 1, no. 4, pp. 1-16, 2016.
[14] B. Philippe, R. m. Dedryvère, J. Allouche, F. Lindgren, M. Gorgoi, H. k. Rensmo, D. Gonbeau, and K. Edström, "Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy," Chemistry of Materials, vol. 24, no. 6, pp. 1107-1115, 2012.
[15] C. K. Chan, R. Ruffo, S. S. Hong, and Y. Cui, "Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes," Journal of Power Sources, vol. 189, no. 2, pp. 1132-1140, 2009.
[16] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," Materials today, vol. 18, no. 5, pp. 252-264, 2015.
[17] Y. Sun, N. Liu, and Y. Cui, "Promises and challenges of nanomaterials for lithium-based rechargeable batteries," Nature Energy, vol. 1, no. 7, pp. 1-12, 2016.
[18] M. T. McDowell, S. W. Lee, J. T. Harris, B. A. Korgel, C. Wang, W. D. Nix, and Y. Cui, "In situ TEM of two-phase lithiation of amorphous silicon nanospheres," Nano letters, vol. 13, no. 2, pp. 758-764, 2013.
[19] Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, "Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life," Nano letters, vol. 11, no. 7, pp. 2949-2954, 2011.
[20] T. Yamamoto, "Molecular assembly and properties of polythiophenes," NPG Asia Materials, vol. 2, no. 2, pp. 54-60, 2010.
[21] D. Ateh, H. Navsaria, and P. Vadgama, "Polypyrrole-based conducting polymers and interactions with biological tissues," Journal of the royal society interface, vol. 3, no. 11, pp. 741-752, 2006.
[22] S. Bhadra, D. Khastgir, N. K. Singha, and J. H. Lee, "Progress in preparation, processing and applications of polyaniline," Progress in polymer science, vol. 34, no. 8, pp. 783-810, 2009.
[23] Y. Yao, N. Liu, M. T. McDowell, M. Pasta, and Y. Cui, "Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings," Energy & Environmental Science, vol. 5, no. 7, pp. 7927-7930, 2012.
[24] H. J. Ahonen, J. Lukkari, and J. Kankare, "n-and p-doped poly (3, 4-ethylenedioxythiophene): two electronically conducting states of the polymer," Macromolecules, vol. 33, no. 18, pp. 6787-6793, 2000.
[25] C. Kim, M. Ko, S. Yoo, S. Chae, S. Choi, E.-H. Lee, S. Ko, S.-Y. Lee, J. Cho, and S. Park, "Novel design of ultra-fast Si anodes for Li-ion batteries: crystalline Si@ amorphous Si encapsulating hard carbon," Nanoscale, vol. 6, no. 18, pp. 10604-10610, 2014.
[26] S. Chae, M. Ko, S. Park, N. Kim, J. Ma, and J. Cho, "Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries," Energy & Environmental Science, vol. 9, no. 4, pp. 1251-1257, 2016.
[27] B. Li, F. Yao, J. J. Bae, J. Chang, M. R. Zamfir, D. T. Le, D. T. Pham, H. Yue, and Y. H. Lee, "Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries," Scientific reports, vol. 5, no. 1, pp. 1-9, 2015.
[28] H. Zhang, P. Zong, M. Chen, H. Jin, Y. Bai, S. Li, F. Ma, H. Xu, and K. Lian, "In situ synthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-ion batteries," Acs Nano, vol. 13, no. 3, pp. 3054-3062, 2019.
[29] W.-h. Lee, D.-Y. Kang, J. S. Kim, J. K. Lee, and J. H. Moon, "Uniformly dispersed silicon nanoparticle/carbon nanosphere composites as highly stable lithium-ion battery electrodes," RSC Advances, vol. 5, no. 23, pp. 17424-17428, 2015.
[30] L. Su, J. Xie, Y. Xu, L. Wang, Y. Wang, and M. Ren, "Preparation and lithium storage performance of yolk–shell Si@ void@ C nanocomposites," Physical chemistry chemical physics, vol. 17, no. 27, pp. 17562-17565, 2015.
[31] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, "High-performance lithium battery anodes using silicon nanowires," Nature nanotechnology, vol. 3, no. 1, p. 31, 2008.
[32] K.-Q. Peng, X. Wang, L. Li, Y. Hu, and S.-T. Lee, "Silicon nanowires for advanced energy conversion and storage," Nano Today, vol. 8, no. 1, pp. 75-97, 2013.
[33] M.-H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, "Silicon nanotube battery anodes," Nano letters, vol. 9, no. 11, pp. 3844-3847, 2009.
[34] J. K. Yoo, J. Kim, Y. S. Jung, and K. Kang, "Scalable fabrication of silicon nanotubes and their application to energy storage," Advanced Materials, vol. 24, no. 40, pp. 5452-5456, 2012.
[35] L. Chen, J. Xie, H. Yu, and T. Wang, "An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries," Journal of Applied Electrochemistry, vol. 39, no. 8, pp. 1157-1162, 2009.
[36] H. Xia, S. Tang, and L. Lu, "Properties of amorphous Si thin film anodes prepared by pulsed laser deposition," Materials Research Bulletin, vol. 42, no. 7, pp. 1301-1309, 2007.
[37] J. Yin, M. Wada, K. Yamamoto, Y. Kitano, S. Tanase, and T. Sakai, "Micrometer-scale amorphous Si thin-film electrodes fabricated by electron-beam deposition for Li-ion batteries," Journal of the Electrochemical Society, vol. 153, no. 3, pp. A472-A477, 2006.
[38] B. M. Bang, J. I. Lee, H. Kim, J. Cho, and S. Park, "High‐Performance Macroporous Bulk Silicon Anodes Synthesized by Template‐Free Chemical Etching," Advanced Energy Materials, vol. 2, no. 7, pp. 878-883, 2012.
[39] M. Ge, Y. Lu, P. Ercius, J. Rong, X. Fang, M. Mecklenburg, and C. Zhou, "Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon," Nano letters, vol. 14, no. 1, pp. 261-268, 2014.
[40] J.-Y. Li, Q. Xu, G. Li, Y.-X. Yin, L.-J. Wan, and Y.-G. Guo, "Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries," Materials Chemistry Frontiers, vol. 1, no. 9, pp. 1691-1708, 2017.
[41] C. Yu, X. Li, T. Ma, J. Rong, R. Zhang, J. Shaffer, Y. An, Q. Liu, B. Wei, and H. Jiang, "Silicon thin films as anodes for high‐performance lithium‐ion batteries with effective stress relaxation," Advanced Energy Materials, vol. 2, no. 1, pp. 68-73, 2012.
[42] M. Ge, X. Fang, J. Rong, and C. Zhou, "Review of porous silicon preparation and its application for lithium-ion battery anodes," Nanotechnology, vol. 24, no. 42, p. 422001, 2013.
[43] X. Chen, X. Li, D. Mei, J. Feng, M. Y. Hu, J. Hu, M. Engelhard, J. Zheng, W. Xu, and J. Xiao, "Reduction mechanism of fluoroethylene carbonate for stable solid–electrolyte interphase film on silicon anode," ChemSusChem, vol. 7, no. 2, pp. 549-554, 2014.
[44] N.-S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim, and S.-S. Kim, "Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode," Journal of Power Sources, vol. 161, no. 2, pp. 1254-1259, 2006.
[45] V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, "Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes," Langmuir, vol. 28, no. 1, pp. 965-976, 2012.
[46] T. D. Bogart, D. Oka, X. Lu, M. Gu, C. Wang, and B. A. Korgel, "Lithium ion battery peformance of silicon nanowires with carbon skin," Acs Nano, vol. 8, no. 1, pp. 915-922, 2014.
[47] Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken, and J. Maier, "Reversible storage of lithium in silver‐coated three‐dimensional macroporous silicon," Advanced materials, vol. 22, no. 20, pp. 2247-2250, 2010.
[48] B. Koo, H. Kim, Y. Cho, K. T. Lee, N. S. Choi, and J. Cho, "A highly cross‐linked polymeric binder for high‐performance silicon negative electrodes in lithium ion batteries," Angewandte Chemie, vol. 124, no. 35, pp. 8892-8897, 2012.
[49] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, "A major constituent of brown algae for use in high-capacity Li-ion batteries," Science, vol. 334, no. 6052, pp. 75-79, 2011.
[50] C. C. Nguyen, D. M. Seo, K. Chandrasiri, and B. L. Lucht, "Improved cycling performance of a Si nanoparticle anode utilizing citric acid as a surface-modifying agent," Langmuir, vol. 33, no. 37, pp. 9254-9261, 2017.
[51] E. Barsoukov, "Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy," Solid State Ionics, vol. 161, no. 1-2, pp. 19-29, 2003.
[52] Q.-C. Zhuang, T. Wei, L.-L. Du, Y.-L. Cui, L. Fang, and S.-G. Sun, "An Electrochemical Impedance Spectroscopic Study of the Electronic and Ionic Transport Properties of Spinel LiMn2O4," 114, pp. 8614-8621, 2010.
[53] E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy, Theory Experiment and Applications: John Wiley & Sons, Inc., Hoboken, New Jersey., 2005.
[54] C. Smit, R. Van Swaaij, H. Donker, A. Petit, W. Kessels, and M. Van de Sanden, "Determining the material structure of microcrystalline silicon from Raman spectra," Journal of applied physics, vol. 94, no. 5, pp. 3582-3588, 2003.
[55] G. Vernin, S. Chakib, S. M. Rogacheva, T. D. Obretenov, and C. Párkányi, "Thermal decomposition of ascorbic acid," Carbohydrate research, vol. 305, no. 1, pp. 1-15, 1997.
[56] S. Jingyan, L. Yuwen, W. Zhiyong, and W. Cunxin, "Investigation of thermal decomposition of ascorbic acid by TG-FTIR and thermal kinetics analysis," Journal of pharmaceutical and biomedical analysis, vol. 77, pp. 116-119, 2013.
[57] S. Mallakpour and M. Naghdi, "Design and preparation of poly (vinyl alcohol) flexible nanocomposite films containing silica nanoparticles with citric acid and ascorbic acid linkages as a novel nanofiller through a green route," International Journal of Polymer Analysis and Characterization, vol. 21, no. 1, pp. 29-43, 2016.
[58] C. C. Nguyen, T. Yoon, D. M. Seo, P. Guduru, and B. L. Lucht, "Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation," ACS applied materials & interfaces, vol. 8, no. 19, pp. 12211-12220, 2016.
[59] W. Wang, Z. Favors, C. Li, C. Liu, R. Ye, C. Fu, K. Bozhilov, J. Guo, M. Ozkan, and C. S. Ozkan, "Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries," Scientific reports, vol. 7, p. 44838, 2017.
[60] M. Levi and D. Aurbach, "Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium," The Journal of Physical Chemistry B, vol. 101, no. 23, pp. 4630-4640, 1997.