| 研究生: |
林裕雅 Lin, Yu-Ya |
|---|---|
| 論文名稱: |
以界面活性劑修飾之聚吡咯/碳黑複合物在質子交換膜燃料電池陰極之耐久性研究 The Durability of Surfactant-Directed Polypyrrole/Carbon Composite in PEMFC Cathode |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 氫氣燃料電池 、聚吡咯/碳黑 、耐久性 、加速老化 |
| 外文關鍵詞: | PEM fuel cell, polypyrrole/carbon black, durability, Accelerated durability test (ADT) |
| 相關次數: | 點閱:121 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將導電性高分子聚吡咯(Polypyrrole)修飾在碳材擔體上,形成一複合材料,利用聚吡咯的高氧化電位及高導電性,以提高碳材擔體在高電壓下的耐腐蝕性;同時以界面活性劑提高聚吡咯覆蓋在碳材表面的均勻性,使碳材不易接觸外界,以達到抗腐蝕的效果。
本研究選用的界面活劑有:陽離子界面活性劑(十六烷基三甲基溴化銨,CTAB),及陰離子界面活性劑(十二烷基硫酸鈉,SDS),探討界面活性劑種類、濃度以及吡咯單體在修飾過程中的含量對碳材修飾及抗氧化的效果。在0.5M H2SO4(aq) 中分別以定電壓放電(1.4V vs. Ag/AgCl)以及掃描電壓(-0.2~1.4V vs. Ag/AgCl, 50mV/s)加速電極觸媒的老化後、以TEM 檢視老化前後白金觸媒的顆粒大小、XRD檢測老化前後白金觸媒的晶粒大小、以TGA分析修飾後擔體的裂解情形、BET測試修飾後擔體的比表面積以及四點探針測試修飾後擔體之導電度;並在0.5M H2SO4(aq)中以循環伏安法(CV)及線性掃描伏安法(LSV)測試電極觸媒老化前後的活性面積變化及氧氣還原活性變化。
以定電壓老化而言,未修飾碳材所得電極觸媒,活性面積遞減率約為33% / Hr.;以SDS參與修飾之擔體,當SDS濃度較高(15mM)與吡咯單體在修飾過程中的含量為50%時,活性面積遞減率最小,約15% / Hr.;而以CTAB參與修飾之擔體,以CTAB濃度較低(5mM)與吡咯含量為20wt%時,活性面積遞減率最低約為20% / Hr.。而以酸性溶液中進行修飾之擔體,當吡咯含量為30wt%時,活性面積遞減率約為16% / Hr.。無論以何種情況修飾之擔體所得的電極觸媒在定電壓老化後,質量活性幾乎沒有損失。
以掃描電壓老化而言,未修飾碳材所得的電極觸媒,其活性面積隨著老化圈數呈指數函數遞減;以聚吡咯修飾的擔體,其電觸媒活性面積隨掃描圈數成線性遞減。以15mM SDS溶液參與修飾與吡咯含量為30wt%的擔體,其電極觸媒活性面積的遞減率最小,約0.058%/cycle。
A conducting polymer composite material comprised of polypyrrole (PPy) and carbon black (PPy/C) were synthesized by in situ polymerization. Polypyrrole as a promising conducting polymer, owns high conductivity and relatively positive oxidation potential. The polypyrrole was modified on carbon black to improve the durability of carbon support in fuel cell. A surfactant was used in the polymerization of polypyrrole to improve the uniformity carbon black. Polypyrrole could prevent the carbon from exposure to the environment and enhance the anti-oxidation of carbon black. The active catalyst Pt was deposited on the carbon support with impregnation-reduction method.
The surfactants used in this report including: cationic surfactant (Cetyl trimethylammonium bromide, CTAB), and anionic surfactant (sodium dodecyl sulfate, SDS). The synthesis parameters involved in this study included the type of surfactants, the concentration of surfactant and the content of pyrrole monomers. The accelerated aging methods were constant potential test (1.4V vs. Ag/AgCl) and potential sweeping test (-0.2~1.4V vs. Ag/AgCl, scan rate: 50mV/s) in 0.5M H2SO4. The thermo-decomposition property, surface area and conductance of modified supports were measured by TGA, BET and four point probe, respectively. Particle size and grain size of the active catalysts were determined by TEM and XRD, respectively, before and after aging tests. Electrochemical surface area (ECSA) and oxygen reduction reaction (ORR) activity were also examined by cyclic voltammetry and linear sweeping voltammetry, respectively, in 0.5M H2SO4(aq).
From the results of constant potential aging test, the ECSA fading rate was 33% per hour for the catalyst with non-modified carbon; the catalyst with the support modified in 15mM SDS solution and 50wt% pyrrole content gave the ECSA fading rate, about 15% per hour for SDS modification; the catalyst with support modified in 5mM CTAB solution and 20wt% pyrrole content gave the samllest ECSA fading rate, about 20% per hour for CTAB modification. The catalyst with support modified in acidic solution and 30 wt% pyrrole content had the smallst ECSA fading rate, about 16% per hour. No matter what kind of modification, the ORR mass activity showed insignificant loss for the catalyst with modified support after constant potential aging test.
Afetr the potential sweeping aging test, the ECSA faded seriously for electro-catalyst with non-modified carbon, and the electro-catalysts with Ppy modification showed slower fading rate. The samllest ECSA fading rate happened in electro-catalyst with support modified in a solution of 15mM SDS and 30wt% pyrrole about 0.058%/cycle.
[1] F. Barbir, Elsevier Academic Press (2005) 9
[2] M. Wakizoe, O. A. Velev and S. Srinivasan, Electrochim. Acta, Vol. 40 (1995) 335
[3] T. Maiyalagan and S. Pasupathi, Materials Science Forum Vol. 657 (2010) 143-189
[4] E. I. Santiago, M. S. Batista, E. M. Assaf and E. A. Ticianelli, J. Electrochem. Soc. Vol. 151 (2004) A944
[5] S. J. Lee, S. Mukerjee, E. A. Ticianelli and J. McBreen, Electrochim. Acta Vol. 44 (1999) 3283
[6] M. Carmo, V. A. Paganin, J. M. Rosolenand and E. R. Gonzalez, J. Power Sources Vol.142 (2005) 169
[7] H. Gasteiger, N. Markovic and P. N. Ross, J. Phys. Chem. Vol.99 (1995) 8290
[8] T. J. Schmidt, M. Noeske, H. A. Gasteiger and R. J. Behm, J. Electrochem. Soc. Vol. 145 (3) (1998) 925
[9] J. Greeley, I. E. L. Stephens, A. S. Bondarenk, T. P. Johansson, H. A. Hansen1, T. F. Jaramill, J. Rossmeisll, I. Chorkendorff and J. K. Nørskov, Nature Chemistry Vol. 1 (2009) 552
[10]U.S. DOE, Hydrogen, Fuel Cells ad Infrastructure Technologies Prgram Multi-Year Research, Development and Demonstration Plan, EERE (2005)
[11]Felix N. Buchi.Minoru Inaba Thomas J. Schmidt, Editors,”Polymer Electrolyte Fuel Cell Durability”, p.59,Springer
[12] S. Cleghorn, J. Kolde, and W. Liu (2003) In: W. Vielstich, H. A. Gasteiger, and A. Lamm (Eds.)
[13] A. Collier, H. Wang, X. Z. Yuan, J. Zhang and D. P. Wilkinson, Int. J. Hydrogen Energy 31 (2006) 1838–1854
[14] E. Endoh, S. Terazono, H. Widjaja and Y. Takimoto, Electrochem. Solid-State Lett. 7 (2004) A209–A211
[15] J. Healy, C. Hayden, T. Xie, K. Olson, R. Waldo, M. Brundage and H. A. Gasteiger, Fuel Cells 5 (2005) 302–308
[16] M. Inaba, K. Taro, M. Kiriake, R. Umebayashi, A. Tasaka and Z. Ogumi, Electrochim.Acta 51 (2006a) 5746–5753
[17] M. Inaba, H. Yamada, R. Umebayashi, M. Sugishita and A. Tasaka, Electrochemistry 75 (2007) 207–212
[18] J. Xie, D. L. Wood, D. M. Wayne, T. A. Zawodinski, P. Atanassov, and R. L. Borup, J. Electrochem. Soc. 152 (2005) A104–A109
[19] Z. Luo, D. Li, H. Tang, M. Pan and R. Ruan, Int. J. Hydrogen Energy 31(2006) 1831–1837
[20] S. Yoshioka, A. Yoshimura, H. Fukumoto, O. Horii and H. Yoshiyasu, Fuel Cell Bull. 3 (2005) 11–15
[21] J. Yu, T. Matsuura, Y. Yoshikawa, M. N. Islam and M. Hori, Electrochem. Solid-State Lett. (2005)
[22] S. J. C. Cleghorn, D. K. Mayfield, D. A. Moore, J. C. Moore, G. Rusch, T. W. Sherman, N. T. Sisofo and U. Beuscher, J. Power Sources 158 (2006) 446–454
[23] Y. Oomori, O. Yamazaki and T. Tabata, The11th FCDIC Fuel Cell Symposium Proceedings, FCDIC, Tokyo, pp. 99–102. (2003)
[24] A. Ohma, S. Suga, S. Yamamoto, and K. Shinohara, ECS Trans. 3(1) (2006) 519–529
[25] J. Qiao, M. Saito, K. Hayamizu, and T. Okada, J. Electrochem. Soc. 153 (2006) A967–A974
[26] K. Teranishi, K. Kawata, S. Tsushima and S. Hirai, Electrochem. Solid-State Lett. 9 (2006) A475–A477
[27] A. B. LaConti, H. Liu, C. Mittelsteadt, and R. C. McDonald, ECS Trans. 1(8) (2006), 199–219
[28] A. B. LaConti, (1982) ACS Polymer Division Topical Workshop on Perfluorinated Ionomer Membranes, Lake Buena Vista, FL.
[29] A. B. LaConti, M. Hamdan, and R. C. Mc Donald, (2003) In: W. Vielstich, H. A. Gasteiger, and A. Lamm (Eds.), Handbook of Fuel Cells-Fundamentals, Technology and Application, Wiley,New York, NY, 647–662
[30] A. Damjanovic, Modern Aspects of Electrochemistry, Plenum, New York, NY (1969) 369–483.
[31] M. R. Tarasevich, A. Sadkowski and E. Yeager, Comprehensive Treatise of Electrochemistry,Plenum, New York, NY, (1983) 301–398
[32] N. M. Markovic and P. N. Ross, Surface Sci. Rep. 45 (2002) 117–229
[33] N. M. Markovic, H. A. Gasteiger and P. N. Ross, J. Phys. Chem. 99 (1995) 3411–3415
[34] U. A. Paulus, T. J. Schmidt, H. A. Gasteiger and R. J. Behm, J. Electroanal. Chem. 495(2001), 134–145
[35] O. Antoine and R. Durand, J. Appl. Electrochem. 30 (2000) 839–844
[36] M. Inaba, H. Yamada, J. Tokunaga, K. Matsuzawa, A. Hatanaka, and A. Tasaka, ECSTrans. 1(8) (2006b) 315–322
[37] M. Inaba, H. Yamada, J. Tokunaga, and A. Tasaka, Electrochem. Solid-State Lett. 7 (2004) A474
[38] W. Liu and D. Zuckerbrod, J. Electrochem. Soc. 152 (2005) A1165–A1170
[39] T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi, A. Tasaka, Y. Iriyama, T. Abe and Z. Ogumi, J. Power Sources 158 (2006) 1222–1228
[40] A. Pozio, R. F. Silva, M. D. Francisco and L. Giorgi, Electrochim. Acta 48 (2003) 1543–1549
[41] M. S. Sulek, S. A. Mueller and C. H. Paik, Electrochem. Solid-State Lett. 11 (2008) B79–B82
[42] E. Endoh, ECS Trans. 3(1) (2006) 9–18
[43] S. Hommura, K. Kawahara, and T. Shimohira, Extended Abstracts of the 207th Electrochemical Society Meeting, Quebec, Canada, Abstract No. 803 (2005a)
[44] S. Hommura, K. Kawahara and T. Shimohira, Polymer Preprints Japan 54 (2005b) 4517–4518
[45] H. Liu, H. A. Gasteiger, A. Laconti and J. Zhang, ECS Trans. 1(8) (2006) 283–293.
[46] V. Mittal, R. Kunz and J. Fenton, ECS Trans. 1(8) (2006a) 275–282
[47] N. Miyake, M. Wakizoe, E. Honda and T. Ohta, ECS Trans. 1(8) (2006) 249–261
[48] V. O. Mittal, H. R. Kunz and J. M. Fenton, Electrochem. Solid-State Lett. 9 (2006b) A299–A302
[49] V. Atrazhev, S. F. Burlatsky, N. E. Cipollini, D. A. Condit and N. Erikhman, 208th Meeting of the Electrochemical Society, Los Angels, CA, Abstract No. 1189 (2005)
[50] A. Panchenko, M. T. M. Koper, T. E. Shubina, S. J. Mitchell and E. Roduner, J. Electrochem. Soc. 151 (2004b) A2016–A2007
[51] P. J. Ferreira, G. J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha and H. A. Gasteiger, J. Electrochem. Soc. 152 (2005) A2256–A2271
[52] K. Yasuda, A. Taniguchi, T. Akita, T. Ioroi and Z. Siroma, Phys. Chem. Chem. Phys. 8 (2006) 746–752
[53] A. Ohma, S. Suga, S. Yamamoto and K. Shinohara, ECS Trans. 3(1) (2006), 519–529
[54] A. Ohma, S. Suga, S. Yamamoto and K. Shinohara J. Electrochem. Soc. 154 (2007) B757–B760
[55] J. Zhang, B. A. Litteer, W. Gu, H. Liu, and H. A. Gasteiger, J. Electrochem. Soc. 154 (2007) B1006–B1011
[56] S. Mitov, A. Panchenko and E. Roduner, Chem. Phys. Lett. 402 (2005) 485–490
[57] D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman, and M. E. Tisack J. Power Sources 131 (2004) 41–48
[58] D. A. Schiraldi, C. Zhou, and T. A. Zawodzinski, Extended Abstracts of the 210th Electrochemical Society Meeting, Cancun, Mexico, Abstract No. 443. (2006)
[59] M. Pourbaix, Atlas of Electrochemical Equilibria, 2nd ed., NACE, Houston, TX. (1974)
[60] B. E. Conway, Prog. Surf. Sci. 49 (1995) 331–345
[61] H. Angerstein-Kozlowska, B. E. Conway and W. B. A. Sharp, J. Electroanal. Chem. 43 (1973) 9–36
[62] V. I. Birss, M. Chang and J. Segal, J. Electroanal. Chem. 355 (1993) 181–191
[63] D. A. Harrington, J. Electroanal. Chem. 420 (1997) 101–109.
[64] G. Jerkiewicz, G. Vatankhah, J. Lessard, M. P. Soriaga and Y. S. Park, Electrochim. Acta 49 (2004) 1451–1459
[65] H. You, Y. S. Chu, T. E. Lister, Z. Nagy, A. L. Ankudiniv and J. J. Rehr, Physica B 283 (2000) 212–216
[66] Z. Nagy and H. You, Electrochim. Acta 47 (2002) 3037–3055
[67] X. P. Wang, R. Kumar and D. J. Myers, Electrochem. Solid-State Lett. 9 (2006b) A225–A227
[68] M. Azaroual, B. Romand, P. Freyssinet and J.-R. Disnar, Geochim. Cosmochim. Acta 65 (2001) 4453–4466
[69] S. Mitsushima, S.Kawahara, K.-I. Ota and N. Kamiya, J. Electrochem. Soc. 154 (2007a) B153–B158
[70] S. Mitsushima, Y. Koizumi, K. Ota and N. Kamiya, Electrochemistry 75 (2007b) 155–158
[71] V. A. T. Dam and F. A. de Bruijn, J. Electrochem. Soc. 154 (2007) B494–B499
[72] P. Bindra, S. J. Clouser and E. Yeager, J. Electrochem. Soc. 126 (1979) 1631–1632
[73] P. J. Ferreira and Y. Shao-Horn, Electrochem. Solid-State Lett. 10 (2007) B60–B63
[74] X. Wang, W. Z. Li, Z. W.Chen, M. Waje and Y. S. Yan, J. Power Sources 158 (2006a) 154–159
[75] R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. I. Kimijima and N. Iwashita, Chem. Rev. 107 (2007) 3904–3951
[76] Y. Shao-Horn, W. C. Sheng, S. Chen, P. J. Ferreria, E. F. Hollby and D. Morgan, Top. Catal. 46 (2007) 285–305
[78] V. Komanicky, K. C. Chang, A. Menzel, N. M. Markovic, H. You, X. Wang and D. Myers, J. Electrochem. Soc. 153 (2006) B446–B451
[79] D. C. Johnson, D. T. Napp and S. Bruckenstein, Electrochim. Acta 15 (1970) 1493–1509
[80] D. A. J. Rand and R. Woods, J. Electroanal. Chem. 35 (1972) 209–218
[81] K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, Wiley, New York, NY. (1988)
[82] K.-I. Ota, S. Nishigori and N. Kamiya, J. Electroanal. Chem. 257 (1988) 205–215
[83] R. M. Darling, and J. P. Meyers, J.Electrochem. Soc. 150 (2003) A1523–A1527
[84] R. M. Darling, and J. P. Meyers, J. Electrochem. Soc. 152 (2005) A242–A247
[85] J. A. S. Bett, K. Kinoshita and P. Stonehart, J. Catal. 41 (1976) 124–133
[86] K. F. Blurton, H. R. Kunz and D. R. Rutt, Electrochim. Acta 23 (1978) 183–190
[87] J. Aragane, T. Murahashi and T. Odaka, J. Electrochem. Soc. 135 (1988), 844–850
[88] M. S. Wilson, F. H. Garzon, K. E. Sickafus and S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 2872–2877
[89] A. V. Virkar and Y. K. Zhou, J. Electrochem. Soc. 154 (2007) B540–B546
[90] P. W.Voorhees, J. Stat. Phys. 38 (1985) 231–252
[91] A. Honji, T. Mori, K. Tamura and Y. Hishinuma, J. Electrochem. Soc. 135 (1988) 355–359.
[92] J. Xie, D. L. Wood, K. L.More, P. Atanassov and R. L. Borup J. Electrochem. Soc. 152 (2005a) A1011–A1020
[93] F. H. Garzon, J. Davey and R. Borup, ECS Trans. 1(2006) 153
[94] T. W. Patterson AIChE Spring National Meeting, New Orleans, LA, (2002) 313–318
[95] E.Guilminot, A. Corcella, F. Charlot, F. Maillard and M. Chatenet, J. Electrochem. Soc. 154 (2007a) B96–B105.
[96] E. Guilminot, A. Corcella, M. Chatenet, F. Maillard, F. Charlot, G. Berthome, C. Iojoiu, J. Y. Sanchez, E. Rossinot and E. Claude, J. Electrochem. Soc. 154 (2007b) B1106–B1114
[97] K. Yasuda, A. Taniguchi, T. Akita, T. Ioroi and Z. Siroma, J. Electrochem. Soc. 153 (2006a) A1599–A1603
[98] W. Bi, G. E. Gray and T. F. Fuller, Electrochem. Solid-State Lett. 10 (2007) B101–B104
[99] D. A. Stevens, M. T. Hicks, G. M. Haugen and J. R. Dahn, J. Electrochem. Soc. 152 (2005) A2309–A2315
[100] T. F. Fuller and G. Gray, ECS Trans. 1 (2006) 345
[101] L. M. Roen, C. H. Paik and T. D. Jarvi, Electrochem. Solid-State Lett. 7 (2004) A19–A24
[102] M. F.Mathias, R. Makharia, H. A. Gasteiger, J. J. Conley, T. J. Fuller, C. J. Gittleman, S. S. Kocha, D. P. Miller, C. K. Mittelsteadt, T. Xie, S. G. Yan and P. T. Yu, Interface 14 (2005) 24–35
[103] C. A.Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang, M. L. Perry and T. D. Jarvi, Electrochem. Solid-State Lett. 8 (2005)A273–A276
[104] E. M. Stuve and H. A.Gastaiger, PEMFC short course, 210th Meeting of The Electrochemical Society, Cancun, Mexico. (2006)
[105] R.Satija, D. L. Jacobson, M. Arif and S. A. Werner, J. Power Sources 129 (2004) 238–245
[106] T. W. Patterson and R. M. Darling, Electrochem. Solid-State Lett. 9 (2006) A183–A185
[107] S. D. Knights, K. M. Colbow, J. St-Pierre, D. P. Wilkinson, J. Power Sources 127 (2004) 127
[108] P. T. Yu, W. Gu, F. T. Wagner, H. A. Gasteiger, Prepr. Symp. – Am. Chem. Soc., Div. Fuel Chem. 52 (2007) 386.
[109] Y.S. Kim, L. Dong, M.A. Hickner, T.E. Glass, V. Webb, J.E. McGrath, Macromolecules 36 (2003) 6281–6285
[110] R.C. McDonald, C.K. Mittelsteadt, E.L. Thompson, Fuel Cells 4 (2004) 208–213.
[111] E.A. Cho, J.J. Ko, H.Y. Ha, S.A. Hong, K.Y. Lee, T.W. Lim, I.H. Oh, J. Electrochem. Soc. 151 (2004) A661–A665
[112] D. Liu, S. Case, J. Power Sources 162 (2006) 521
[113] H. Nakayama, T. Tsugane, M. Kato, Y. Nakagawa, M. Hori, 2006 Fuel Cell Seminar Abstracts, Courtesy Associates, Hawaii (2006).
[114] W. Liu, M.Crum, ECS Trans. 3(1) (2006) 531–40
[115] R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, J. Power Sources 163(1) (2006) 76–81
[116] M. Cai, M.S. Ruthkosky, B. Merzougui, J. Power Sources 160(2) (2006) 977–86
[117] T.J. Schmidt, ECS Trans. 1(8) (2006) 19–31
[118] H. Xu, R. Kunz, J.M. Fenton, Electrochem. Solid-State Lett. 10(1) (2007) B1–5
[119] W. Bi, T.F. Fuller, J. Electrochem. Soc. 155(2) (2008) B215–21
[120] S.J. Hamrock, M.A. Yandrasits, Polymer Rev. 46(3) (2006) 219–44
[121] D.M. Pierpont, M.T. Hicks, T.M. Watschke, P.L. Turner, M.A. Yandrasits, Fuel cell Seminar, Palm Springs, CA, November (2005).
[122] R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, P.M. Welch, K. More, ECS Trans. 3(1) (2006) 879–86
[123] B. Wahdame, D. Candusso, X. Francois, F. Harel, M.C. Pe´ra, D. Hissel, Int. J. Hydrogen Energy 32(17) (2007) 4523–36
[124] F. Harel, X. Francois, D. Candusso, M.C. Pe´ra, D. Hissel, J.M. Kauffmann, Fuel Cells 7(2) (2007) 142–52
[125] X. Cheng, Z. Shi, N. Glass, L. Zhang, J.J. Zhang, D.T. Song, J. Power Sources 165(2) (2007) 739–56
[126] R Mohtadi, W.K. Lee, J.W. Van Zee, J. Power Sources 138(1-2) (2004) 216–25
[128] W.T. Wang, W.K. Lee, J.W. Van Zee, ECS Trans. 1(8) (2006) 131–7
[129] F.A. Uribe, S. Gottesfeld, T.A. Zawodzinski Jr, J. Electrochem. Soc. 149(3) (2002) A293–6
[130] T.R. Ralph, S. Hudson, D.P. Wilkinson. ECS Trans. 1(8) (2006) 67–84
[131] A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki, J. Power Sources 130(1–2) (2004) 42–9
[132] A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki, Int. J. Hydrogen Energy 33 (2008) 2323–2329
[133] H. Tang, Z.G. Qi, M. Ramani, J.F. Elter, J. Power Sources 158 (2006) 1306–1312
[134] H. Yoshida, Y. Miura, J. Memb. Sci. 68(1–2) (1992) 1–10
[135] J. Zawodzinski, C. Derouin, S. Radzinski, R.J. Sherman, V.T. Smith, T.E. Springer, J. Electrochem. Soc. 140(4) (1993) 1041–7
[136] Y. Hishinuma, T. Chikahisa, F. Kagami, T. Ogawa., JSME Int. J. Ser. B 47(2) (2004) 235–41
[137] M. Oszcipok, M. Zedda, D. Riemann, D. Geckeler, J. Power Sources 154(2) (2006) 404–11
[138] R. Makharia, S.S. Kocha, P.T. Yu, M.A. Sweikart, W.B. Gu, F.T. Wagner, ECS Trans. 1(8) (2006) 3–18
[139] S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, J. Power Sources 176(2) (2008)444–51
[140] N.V. Beck, S.E. Meech, P.R. Norman, L.A. Pears, Carbon 40(4) (2002) 531–40
[141] K.H. Kangasniemi, D.A. Condit, T.D. Jarvi, J. Electrochem. Soc. 151(4) (2004) E125–32
[142] M. Oszcipok, D. Riemann, U. Kronenwett, M. Kreideweis, M. Zedda, J. Power Sources 145(2) (2005) 407–15
[143] D.L. Wood, J.R. Davey, P. Atanassov, R.L. Borup, ECS Trans 3(1) (2006) 753–63
[144] M. Schulze, N. Wagner, T. Kaz, K.A. Friedrich, Electrochim. Acta 52(6) (2007) 2328–36
[145] M. Schulze, C. Christenn, Appl. Surf. Sci. 252(1) (2005) 148–53
[146] S. Kim, B. K. Ahn, M. M. Mench, J. Power Sources 179(1) (2008) 140–6
[147] R. Mukundan, Y.S. Kim, F. Garzon, B. Pivovar, ECS Trans. 1(8) (2006) 403–13
[148] P. T. Yu, W. Gu, R. Makharia, F.T. Wagner, H.A. Gasteiger, ECS Trans. 3 (2006) 797–809
[149] J. Frisk, W. Boand, M. Kurkowski, R. Atanasoski, A. Schmoeckel, Fuel cell seminar 2004, San Antonio, TX USA, November (2004)
[150] C. Lee, W. Me´rida, J. Power Sources, 164(1) (2007) 141–53.
[151] A. Smirnova, X. Dong, H. Hara, A. Vasiliev and N. Sammes, Int. J. Hydrogen Energy Vol.30 (2005) 149
[152] Y. Zhou, T. Holme, J. Berry, T.R. Ohno, D. Ginley and R. O. Hayre, J. Phys. Chem. C Vol.114 (2010) 506
[153] K. P. Gong, F. Du, Z.H. Xia, M. Durstock and L.M. Dai, Science Vol. 323 (2009) 760
[154] T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki and K. Yasuda, Electrochem. Commun. Vol. 7 (2005) 183
[155] R. Kou, Y. Shao, D. Wang, M.H. Engelhard, J.H. Kwak, J. Wang, V. Viswanathan, C. Wang, Y. Lin, Y. Wang, I.A. Aksay and J. Liu, Electrochem. Commun. Vol. 11 (2009) 954.
[156] H. Scholl, B. Hofman and A. Rauscher, Electrochim. Acta Vol. 37 (1992) 447
[157] B. Avasarala, T. Murray, W.Z. Li and P. Haldar, J. Mater. Chem. Vol. 19 (2009), 1803
[158] S. Yin, S. Mua, H. Lv Niancai Cheng, M. Pan and Z. F, Applied Catalysis B: Environ Vol.93 (2010) 233
[159] A.H. Chen, K. Kamata and M. Nakagama, J. Phys. Chem. B Vol. 109 (2005) 18283
[160] S-Y. Huang, P. Ganesan and B.N. Popov, Applied Catalysis B: Environ, Vol. 93 (2009) 75
[161] J. A. Pomposo, E. Ochoteco, C. Pozo, P. M. Carrasco, H. J. Grande and F. J. Rodrı′guez, Polym. Adv. Technol 17 (2006) 26–29
[162]X. Zhang, J. Zhang, W. Song, and Z. Liu, J. Phys. Chem. B 110 (2006) 1158-1165
[163]汪建民,材料分析Material analysis, 中國材料科學學會 (2001) 65.
[164] A. Katayama-Aramata, H. Nakajima, K. Fujikama, and H. kita, Electrochimica. Acta 28 (1987) 777-780
[165]S. Y. Huang, P. Ganesan, B. N. Popov, Applied Catalysis B: Environ 93 (2009) 75-81
[166] D. Pantea, H. Darmstadt, S. Kaliaguine, L. Sümmchen and C. Roy, Carbon 39 (2001) 1147 –1158
[167]A.Stassi, E. Modica, V. Antonucci, A.S. Aricò, FUEL CELLS No. 0 1-8
[168]X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan, J. Power Sources 158 (2006) 154-159
[169]Z. Lei, M. Zhao, L. Dang, L. An, M. Lu, A.Y. Lo, N. Yu and S. B. Liu, J. Mater. Chem. 19 (2009) 5985–5995
[170] S. M. Unni, V. M. Dhavale, V. K. Pillai and S. Kurungot, J. Phys. Chem. C 34 (2010) 14654–14661
[171] J. Li, E. S. Steigerwalt, S. Sambandam, W. Lu, and C. M. Lukehart, Chem. Mater. 19 (2007) 6001–6006
[172] L. Li, Y. Xing,” J. Power Sources 178 (2008) 75–79
[173] A. J. Bard , L. R. Faulkner, “Electrochemical Methods: Fundamentals and Application.“ Second ed., John Wiley & Sons, New York (2001) 335-350.
[174]賴韋翔”碳擔體形態及表面處理對直接甲醇燃料電池性能之影響” 國立成功大學化學工程學系碩士論文(2008).
[175] S. Zhang, X-Z. Yuan, H. Wang, W. Me´rida, H. Zhu, J.Shen, S. Wu, J. Zhang, Inter. J. hydro. Energy 113(34) (2009) 388-404
[176] F. A. de Bruijn, V. A. T. Dam, andG. J. M. Janssen, Fuel Cells 08(1) (2008) 3–22
[177] X. Zhang, J. Zhang, W. Song, and Z Liu, J. Phys. Chem. B 110 (2006) 1158-1165
[178] X. Zhang, J. Zhang, W. Song, and Z Liu, ChemPhysChem 5 (2004) 998-1002
[179] J.-A. Pomposo, E. Ochoteco, C. Pozo, P.-M. Carrasco,H.-J. Grande and F.-J. Rodrı′guez, Polym. Adv. Technol. 17 (2006) 26–29