| 研究生: |
許經偉 Hsu, Ching-Wei |
|---|---|
| 論文名稱: |
退火溫度對鐵磁形狀記憶鐵鈀合金之微組織與磁性質研究 Effect of Annealing Temperature on Microstructures and Magnetic Properties for Ferromagnetic Shape Memory Fe-Pd Alloys |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 鐵鈀鐵磁性形狀記憶合金 、EBSD 、磁致應變 |
| 外文關鍵詞: | ferromagnetic shape memory alloys, EBSD, magnetostriction |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討鐵鈀鐵磁性形狀記憶合金分別在不同退火溫度的磁致應變與微結構比較。使用真空電弧熔煉鑄造方式製備鐵鈀合金,在熔煉爐內通以保護氣氛以電弧將鐵與鈀塊材熔煉成合金,經由退火1000°C、1100°C以及1250°C 36h後淬火等熱處理過程。以EDS分析淬火後試片之成分,DSC分析其麻田散體相轉換溫度,並以XRD測量其晶體結構,並以電子背向散射繞射(Electron Back Scattering Diffraction, EBSD)技術分析其晶粒方向分佈,以及麻田散體的優選取向(preferred orientation)並進行FCT及FCC相鑑定,表面形貌以OM觀察,並藉由VSM量取磁滯曲線,以及DIC(Digital Image Correlation)量測磁致應變。
在不同退火溫度後淬火的麻田散體,可由結構分析發現均含有
FCT麻田散體雙晶結構,並可由相變態分析知FCT為可逆麻田散體,在物理性質上皆為軟磁性質,矯頑磁力均低於20 Oe,且易磁化軸均位於x軸。磁致應變分析中發現,外加磁場小於7500Oe以下,隨著磁場的增加,晶粒大小愈大在x軸方向的平均應變量愈大。從單一麻田散體晶粒來看的磁致應變分析中可得晶體優選取向為(5 0 3)的平均應變量最大,其應變量為0.218%。
This study focused on iron palladium ferromagnetic shape memory alloys at different annealing temperatures of magnetostriction compared with microstructures. Fe-Pd alloys were produced by a vacuum arc-melting furnace using protecting atmosphere, and quenching after annealing 1000 °C, 1100 °C and 1250 °C 36h heat treatment process obtained. The chemical components of the specimen after quenching were measured by EDS. The temperature of phase transformation was obtained by DSC. The crystal structures were measured by XRD, and EBSD (Electron Back Scattering Diffraction) technique analyzed the orientation of martensite grain, the preferred orientation of martensite, and identified FCT and FCC phase. Surface morphology and martensite plates distance were observed by OM. The hysteresis loop was measured using VSM, and use DIC (Digital Image Correlation) analysis technique to measure magnetostriction.
After quenching at different annealing temperature of martensite can find FCT twin martensite structure by structural analysis. Phase transformation experiments can know as the reversible martensite FCT. That are all soft magnetic materials on the physical properties, the coercivies are lower than 20 Oe, and the easy magnetization axis are located in the x-axis. Magnetostriction analysis found that the magnetic field is less than 7500Oe, as the magnetic field increases, the larger grain size the average strain should be greater in the x-axis. From one martensite grain analysis, the average magnetostriction which was 0.218% were the largest at preferred orientation (503).
[1]L. C. Chang and T. A. Read,” Experimental evidence of relaxation during diffusionness phase change of single crystal beta Au-Cd alloys containin g47.5 atomic percent Cd", Transactions AIME, 139 (1951), p47.
[2] W. J. Buehler, J. V. Gilfrich and R. C. Wiley,” Shape-memory effect in Ni-Ti alloys”, Journal of Applied Physics, 34 (1963), p1457.
[3] T. Sakamoto, T. Fukuda, T. Kakeshita, T. Takeuchi and K. Kishio,” Giant magnetic field-induced strain due to r ear rangement of variants in an ordered Fe3Pt”, Science and Technol ogy of Advanced Materials, 5 (2004), p35.
[4] J. Jafari, S.M. Zebarjad and S.A. Sajjadi, “Effect of pre-strain on microstructure of Ni–Ti orthodontic archwires”, Materials Science and Engineering A,473(2008), p42.
[5] K. Ehara, H. Tanaka and Y. Kanno, “Evaluation of ferromagnetic shape-memory alloys by the extended Hurckel method”,IEEJ Transactions on Electrical and Electronic Engineering , 2(2007), p313.
[6] K. U. llakko, J.K. Huang, V. V. Kokorin and R. C. O'handley,” magnetic alloy controlled shape memory effect in Ni2MnGa intermetallics”, Scripta Materialia, 36 (1997), p1133.
[7] K. Ullakko, “Magnetically controlled shape memory alloys: A new class of actuator materials“, Joural of Materials Engineering and Performance, 5 (1996), p405.
[8] J. Cui, T.W. Shield, R.D. James, “Phase transformation and magnetic anisotropy of an iron–palladium ferromagnetic shape -memory alloy”,Acta Materialia, 52(2004), p35.
[9] I. Suorsa, “Voltage generation induced by mechanical straining in magnetic shape memory materials”, Journal of Applied Physics, 95(2004), p8044.
[10] F.A. Hames, “Ferromagnetic-Alloy Phases Near the Compositions Ni2MnIn, Ni2MnGa, Co2MnGa, Pd2MnSb, and PdMnSb”, Journal of Applied Physics, 31(1960), 370S.
[11] T. Sohmura, R. Oshima, F. E. Fujita, “Thermoelastic FCC-FCT martensitic transformation in Fe---Pd alloy”, Scripta Metallurgica,14 (1980), p855
[12] H. Kato, Y. Liang, M. Taya, ” Stress-induced FCC/FCT phase transformationin Fe–Pd alloy”, Scripta Materialia, 46(2002), p471.
[13] J. Buschbeck, I. Lindemann, L. Schultz, and S. Fähler1, “Growth, structure, and texture of epitaxial Fe100−xPdx films deposited on MgO(100) at room temperature: An x-ray diffraction study”,Physical Review B, 76(2007), 205421
[14] H.Y. Yasuda, N. Komoto, M. Ueda and Y. Umakoshi, “
Microstructure Control for Developing Fe-Pd Ferromagnetic Shape Memory Alloys”, Science and Technology of Advanced Materials, 3(2002), p165.
[15] A. Sozinov, A. A. Likhachev, and K. Ullakko, “Crystal Structures and Magnetic Anisotropy Properties of Ni–Mn–Ga Martensitic Phases With Giant Magnetic-Field-Induced Strain”, IEEE Transactions on Magnetics, 38 (2002), NO. 5
[16] I. Kock, S. Hamann, H. Brunken, T. Edler, S.G. Mayr, and A Ludwig, “Development and characterization of Fe70Pd30
ferromagnetic shape memory splats”, Intermetallics, 18 (2010), p877
[17] H. Nishihara, K. Komiyama, I. Oguro, T. Kanomata, V. Chernenko“Magnetization processes near the Curie temperatures of the itinerant ferromagnets, Ni2MnGa and pure nickel”, Journal of Alloys and Compounds, 442 (2007), p191
[18] R. Oshima, “Successive martensitic transformations in Fe---Pd alloys ” , Scripta Metallurgica,15 (1981), p829
[19] M. Sugiyama, R. Oshima, and E E. Fujita, “Martensitic transformation in the Fe-Pd alloy system” , Transactions of the Japan Institute of Metals, 25 (1984), p585.
[20] V. Recarte, C. Go’mez-Polo, V. Sa’nchez-Ala’rcos, J.I. Pe’rez-Land aza’bal, “Magnetic study of the martensitic transformation in a Fe–Pd alloy”, Journal of Magnetism and Magnetic Materials, 316 (2007), p614.
[21] V. S´anchez-Alarcos, V. Recarte, J.I. P´erez-Landaz´abal, C. G´omez-Polo, V.A. Chernenko,and M.A. Gonz´alez, “Reversible and irreversible martensitic transformations in Fe-Pd and Fe-Pd-Co alloys”, European Physical Journal Special Topics, 158 (2008), p107.
[22] T. Yamamoto, M. Taya, Y. Sutou, Y. Liang, T. Wada, L. Sorensen, “Magnetic field-induced reversible variant rearrangement in Fe–Pd single crystals”, Acta Materialia, 52 (2004), p5083.
[23] V. Sa’nchez-Alarcos, V. Recarte, J.I. Pe’rez-Landaza’bal, M.A. Gonza’lez, J.A. Rodrı’guez-Velamaza’n, “Effect of Mn addition on the structural and magnetic properties of Fe–Pd ferromagnetic shape memory alloys, Acta Materialia 57(2009), p4224.
[24] T. Wada, T. Tagawa, M. Taya, “Martensitic transformation in Pd rich Fe–Pd–Pt alloy”, Scripta Materialia,48(2003), p207.
[25] T. Yamamoto, M. Taya, Y. Sutou, Y. Liang, T. Wada, L. Sorensen, “Magnetic field-induced reversible variant rearrangement in Fe–Pd single crystals”, Acta Materialia, 52(2004), p5083.
[26] H. Kato, T. Wada, Y. Liang, T. Tagawa, M. Taya, T. Mori, “Martensite structure in polycrystalline Fe–Pd”, Materials Science and Engineering A, 332(2002), p134.
[27] J.J. Felten, T.J. Kinkus, A.C.E. Reid, J.B. Cohen, and G.B. Olson, “Solid-solution structure and the weakly first-order displacive transformation in Fe-Pd Alloys”, Metallurgical and MaterialsTransactions A, 28(1997), p527.
[28] M. Sugiyama, R.Oshima and F.E. Fujita, “Mechanism of FCC-FCT thermoelastic martensite-transformation in Fe-Pd Alloys”, Transactions of the Japan Institute of Metals, 27(1986), p719.
[29] T. Wada, Y. Liang, H. Kato, T. Tagawa, M. Taya, T. Mori, “Structural change and straining in Fe–Pd polycrystals by magnetic field”, Materials Science and Engineering A, 361 (2003), p75.
[30] R. A. Stern, S. D. Willoughby, A. Ramirez, and J. M. MacLaren and J. Cui, Q. Pan, and R. D. James, “Electronic and structural properties of Fe3Pd–Pt ferromagnetic shape memory alloys”, Journal of Applied Physics, 91(2002), p7818.
[31] R.D. James and M. Wuttig, “Magnetostriction of Martensite”, Philosop phical Magazine A, 77(1998), p1273.
[32] S. Inoue, K. Inoue, K. Koterazawa, K. Mizuuchi, “Shape memory behavior of Fe-Pd alloy thin films prepared by dc magnetron sputtering”, Materials Science and Engineering A, 339 (2003), p29.
[33] S. U. Jen, Y. T. Chen, T. L. Tsai, and Y. C. Lin, “Magnetostrictive strains in polycrystalline FePdRh alloy”, Journal of Applied Physics, 103(2008), p92.
[34] A. Koblischka-Veneva, C. Gachot, P. Leibenguth, F. Mücklich, “Investigation of microstructure of bulk Ni2MnGa alloy by means of electron backscatter diffraction analysis”, Journal of Magnetism and Magnetic Materials, 316(2007), p431
[35] N. Scheerbaum, Y.W. Lai, T. Leisegang, M. Thomas, J. Liu, K. Khlopkov, J. McCord, S. Fähler, R. Träger, D.C. Meyer, L. Schultz, O. Gutfleisch, “Constraint-dependent twin variant distribution in Ni2MnGa single crystal, polycrystals and thin film: An EBSD study”, Acta Materialia, 58(2010), p4629
[36] Y. Furuya, N. W. Hagood, H. Kimura, T. Watanabe, “Shape memory effect and magnetostriction in rapidly solidified Fe-29.6 at%Pd alloy “, Materials Transactions JIM, 39(1998), p1248.