| 研究生: |
吳亦凡 Wu, Yi-Fan |
|---|---|
| 論文名稱: |
以原子力顯微鏡製作奈米圖像於石墨烯 Atomic Force Microscope Nanopatterning of Graphene |
| 指導教授: |
吳忠霖
Wu, Chung-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 石墨烯 、局部陽極氧化 、拉曼光譜 、掃描式光電子顯微術 、原子力顯微鏡 、掃描式電子顯微鏡 、蕭特基位障 、熱離子發射 、熱離子場發射 |
| 外文關鍵詞: | graphene, Local Anodic Oxidation, Raman Spectroscopy, Scanning Photoelectron Microscopy, Atomic Force Microscope, Scanning Electron Microscope, Schottky barrier, Thermionic Emission, Thermionic Field Emission |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究內容針對在矽基板與碳化矽基板上的石墨烯,以原子力顯微鏡對其表面進行局部陽極氧化 (Local Anodic Oxidation ,LAO)。LAO產生的石墨烯氧化物可以利用空間解析的拉曼光譜及光電子能譜術確認。透過掃描式電子顯微鏡、原子力顯微鏡可以檢測石墨烯在不同氧化電壓下會有不同的形貌變化。以LAO在碳化矽基板上製作的方框圖像在電子顯微鏡下顯示了框內與框外的對比度差異,這可以歸因於LAO的過程改變了石墨烯的電子結構。石墨烯/石墨烯氧化物/石墨烯結構的I-V特性可以採用包含兩個串聯的蕭特基位障 (Schottky barrier)的金屬/半導體/金屬結構作為模型解釋。同時我們發現被方框侷限住的石墨烯其位障高度會隨著方框的尺寸大小而劇烈地改變。
The local anodic oxidation (LAO) of graphene on Si and SiC substrates by atomic force microscope (AFM) was shown here. The LAO-induced graphene oxide (GO) structure on graphene was demonstrated by spatially resolved Raman spectroscopy and photoelectron spectroscopy (PES). Scanning electron microscope (SEM) and AFM investigations show different topographic features with different applied oxidation voltages. By creating GO open square patterns in epitaxial graphene grown on SiC substrate using LAO, we found a SEM image contrast of graphene inside and outside the square pattern, which can be interpreted by the electronic structure manipulation of graphene induced by LAO patterning. In addition, the current-voltage characteristics of the graphene/graphene oxide/graphene sandwich structure can be modeled by conventional M-S-M structure composed of two Schottky barriers connected in series. And the barrier height of isolated graphene created by open-square pattern was found to be changed significantly with square area.
1 Geim, Andre K., and Konstantin S. Novoselov. "The rise of graphene." Nature materials 6.3 (2007): 183-191.
2 Alaboson, Justice MP, et al. "Conductive atomic force microscope nanopatterning of epitaxial graphene on SiC (0001) in ambient conditions."Advanced Materials 23.19 (2011): 2181-2184.
3 Chuang, Min-Chiang, et al. "Local anodic oxidation kinetics of chemical vapor deposition graphene supported on a thin oxide buffered silicon template."Carbon (2012).
4 Ito, Jun, Jun Nakamura, and Akiko Natori. "Semiconducting nature of the oxygen-adsorbed graphene sheet." Journal of Applied Physics 103.11 (2008): 113712-113712.
5 Gómez-Navarro, Cristina, et al. "Electronic transport properties of individual chemically reduced graphene oxide sheets." Nano letters 7.11 (2007): 3499-3503.
6 Zhang, Zhiyong, et al. "Quantitative analysis of current–voltage characteristics of semiconducting nanowires: decoupling of contact effects." Advanced functional materials 17.14 (2007): 2478-2489.
7 An, Yanbin, et al. "Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions." Applied Physics Letters 102.1 (2013): 013110-013110.
8 樊曉峰, 郭哲來,Phys. Bimonthly 33-2 , 214-235(2011)
9 林永昌,鄭碩方,呂俊頡, 邱博文,Phys. Bimonthly 33-2 ,191-202(2011)
10 Geisse, Nicholas A. "AFM and combined optical techniques." Materials today12.7 (2009): 40-45.
11 Morris, Victor J., Andrew R. Kirby, and A. Patrick Gunning. Atomic force microscopy for biologists. Vol. 57. London: Imperial College Press, 2010.
12 Adamcik, Jozef, Alexandre Berquand, and Raffaele Mezzenga. "Single-step direct measurement of amyloid fibrils stiffness by peak force quantitative nanomechanical atomic force microscopy." Applied Physics Letters 98.19 (2011): 193701-193701.
13 Cazaux, Jacques. "From the physics of secondary electron emission to image contrasts in scanning electron microscopy." Journal of Electron Microscopy61.5 (2012): 261-284.
14 Colthup, Norman B., Lawrence H. Daly, and Stephen E. Wiberley. Introduction to infrared and Raman spectroscopy. Academic press, 1990.
15賴英煌, 邱雯藝, and 洪偉修. "同步輻射 X-ray 光電子能譜在表面化學之研究."CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) SEP 60.3 (2002): 381-390.
16 Emtsev, Konstantin V., et al. "Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide." Nature materials 8.3 (2009): 203-207.
17 Chiou, J.-W. and Chen, C.-H. Scanning Photoelectron Microscopy for the Characterization of Novel Nanomaterials, in X-Rays in Nanoscience: Spectroscopy, Spectromicroscopy, and Scattering Techniques (ed J. Guo), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. (2010)
18 Luxmi, P. J. Fisher, N. Srivastava, R. M. Feenstra, Y. Sun, J. Kedzierski, P. Healey, and G. Gu, Appl. Phys. Lett. 95, 073101 (2009)
19 Hannon, J. B., and R. M. Tromp. "Pit formation during graphene synthesis on SiC (0001): In situ electron microscopy." Physical review B 77.24 (2008): 241404.
20 Reina, Alfonso, et al. "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition." Nano letters 9.1 (2008): 30-35.
21 Bae, Sukang, et al. "Roll-to-roll production of 30-inch graphene films for transparent electrodes." Nature nanotechnology 5.8 (2010): 574-578.
22莊鎮宇 ,Phys. Bimonthly 33-2 ,155-162(2011)
23 Benjamin Pollard ,” Growing Graphene via Chemical Vapor Deposition” (2011)
24 Calleja, Montserrat, and Francesc Perez-Murano. "Local oxidation of silicon surfaces by dynamic force microscopy: Nanofabrication and water bridge formation." Applied Physics Letters 72.18 (1998): 2295-2297.
25 Avouris, Ph, et al. "AFM-tip-induced and current-induced local oxidation of silicon and metals." Applied Physics A: Materials Science & Processing 66 (1998): S659-S667.
26 Masubuchi, Satoru, et al. "Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope." Applied Physics Letters94.8 (2009): 082107-082107.
27 Giesbers, A. J. M., et al. "Nanolithography and manipulation of graphene using an atomic force microscope." Solid State Communications 147.9 (2008): 366-369.
28 Malard, L. M., et al. "Raman spectroscopy in graphene." Physics Reports473.5 (2009): 51-87.
29 Ferrari, A. C., et al. "Raman spectrum of graphene and graphene layers."Physical review letters 97.18 (2006): 187401.
30 Gómez-Navarro, Cristina, et al. "Electronic transport properties of individual chemically reduced graphene oxide sheets." Nano letters 7.11 (2007): 3499-3503.
31 Avouris, Ph, et al. "AFM-tip-induced and current-induced local oxidation of silicon and metals." Applied Physics A: Materials Science & Processing 66 (1998): S659-S667.
32 Wei, Ang, et al. "Synthesis of high-performance graphene nanosheets by thermal reduction of graphene oxide." Materials Research Bulletin 46.11 (2011): 2131-2134.
33 Sharma, Priyanka, et al. "Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes." Scientific reports 2 (2012).
34蘇清源 ,Phys. Bimonthly 33-2 ,163-167(2011)
35 Lee, Dong Su, et al. "Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2." Nano letters 8.12 (2008): 4320-4325.
36 Park, Jeongho, et al. "Epitaxial graphene growth by carbon molecular beam epitaxy (CMBE)." Advanced Materials 22.37 (2010): 4140-4145.
37 Fromm, F., et al. "Contribution of the buffer layer to the Raman spectrum of epitaxial graphene on SiC (0001)." New Journal of Physics 15.4 (2013): 043031.
38 Akhavan, O. "Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol." Carbon 49.1 (2011): 11-18.
39 Akhavan, O. "The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets." Carbon 48.2 (2010): 509-519.
40 Monoy, A., et al. "Surface preparation influence on the initial stages of MOCVD growth of TiO< sub> 2</sub> thin films." Thin solid films 515.2 (2006): 687-690.
41 Park, Cheol-Min, et al. "Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries."Journal of Materials Chemistry 20.23 (2010): 4854-4860.
42 Bashouti, Muhammad Y., et al. "Hybrid Silicon Nanowires: From Basic Research to Applied Nanotechnology." (2012).
43 Cazaux, Jacques. "Calculated effects of work function changes on the dispersion of secondary electron emission data: Application for Al and Si and related elements." Journal of Applied Physics 110.2 (2011): 024906-024906
44 Venugopal, Gunasekaran, et al. "An investigation of the electrical transport properties of graphene-oxide thin films." Materials Chemistry and Physics 132.1 (2012): 29-33.
45王江綸. "石墨烯在金塗層的氧化矽基板上其殼層光電子顯微能譜的研究 Graphene on Au-coated SiOx substrate: Its core-level photoelectron micro-spectroscopy study." 成功大學物理學系碩博士班學位論文 (2012): 1-44.
46 Padovani, F. A., and R. Stratton. "Field and thermionic-field emission in Schottky barriers." Solid-State Electronics 9.7 (1966): 695-707
校內:2023-12-31公開