| 研究生: |
梁浩銘 Liang, Hao-Ming |
|---|---|
| 論文名稱: |
IEEE 802.11 MAC傳輸協定的效能最佳化與公平性之探討 Study on Efficiency and Fairness in IEEE 802.11 MAC Protocol |
| 指導教授: |
謝錫堃
Shieh, Ce-Kuen |
| 共同指導教授: |
黃文祥
Hwang, Wan-Shyang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 無線網路 、非對稱通道 、效能異常 、公平性 |
| 外文關鍵詞: | IEEE 802.11, WLAN, performance anomaly, asymmetric links, fairness |
| 相關次數: | 點閱:87 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在IEEE 802.11無線區域網路傳輸中因CSMA/CA演算法導致效能低落,在個人的論文中提出了分散式動態效能改進演算法,該演算法分析通道傳輸密度推測活躍無線節點的數目,並透過動態控制MAC傳輸協定中的競爭視窗大小,各節點可有效提升系統傳輸產出,另外針對無線節點間的公平性議題,包含無線節點間因調變編碼產生的效能異常及無線基地台與節點間上下行傳輸非對稱現象,在本論文中透過數學模型與模擬探討,提出修改無線基地台的傳輸佇列,達到各無線節點間的傳輸公平性,本論文所提出的DBM(Density Based Method)演算法,由實驗結果可以看出有效地改善傳統IEEE 802.11 DCF的傳輸效能,並且避免無線錯誤對傳輸效能的干擾。配合針對公平性所提出的SA-CW (Self-Adjusting Contention Window scheme)無線通道存取方法,從數據及分析上,可以發現各無線節點間可以避免多速率傳輸異常現象,及無線基地台上下行瓶頸議題,在吞吐量、公平性指標、時間延遲上都有大幅度地改善。
The performance of the Distributed Coordination Function (DCF) (i.e. the basic access method of the IEEE 802.11 protocol) is far from optimum due to use of the binary exponential backoff (BEB) scheme as its collision avoidance mechanism. The literatures contained considerable enhancements of DCF issues and its performance analysis. However, most schemes assume data rate and traffic load are the same among wireless devices, which are opposite to realistic wireless environments and arise fairness issues. The fairness issue includes the performance anomaly and links asymmetry may occur among wireless devices in deployed Wireless Local Area Networks (WLANs). Previous studies proposed solutions that addressed either performance anomaly (throughput) or asymmetric links (fairness) issue. In this dissertation, we emphasize the necessity to consider both issues concurrently. A self-adjusting contention window scheme (SA-CW) is proposed to improve system fairness and efficiency by solving concurrently performance anomaly and asymmetric links issues in IEEE 802.11 WLANs with multi-rate transmissions. Moreover, we present a simple yet pragmatic distributed algorithm, designated the density based access method (DBM), which allows stations to dynamically optimize the network throughput based on run-time measurements of channel status.
[1] Information technology (1999)- Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks - Speci_c Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci_cations. ANSI/IEEE Std 802.11, 1999 Edition.
[2] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE Journal on Selected Areas in Communications, vol. 18, no.3, pp.535–547, 2000.
[3] H. Zhai, Y. Kwon, and Y. Fang, “Performance Analysis of IEEE 802.11 MAC Protocols in Wireless LANs,” Wireless Communication and Mobile Computing, vol. 4, no. 8, pp. 917–931, 2004.
[4] P. Chatzimisios, C. A. Boucoucalas, and V. Vitas, “Performance Analysis of the IEEE 802.11 MAC Protocol for Wireless LANs,” International Journal of Communication Systems, vol. 18, no. 6, pp. 545–569, 2005.
[5] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: A Media Access Protocol for Wireless LAN’s,” Proc. ACM SIGCOMM 1994, pp. 212–225, 1994.
[6] N.-O.Song, B.-J. Kwak, J. Song, and L. E. Miller, “Enhancement of IEEE 802.11 Distributed Coordination Function with Exponential Increase Exponential Decrease Backoff Algorithm,” Proc. IEEE VTC 2003, vol. 4, pp. 2775–2778, 2003.
[7] V. Vitsas, “Throughput Analysis of Linear Backoff Scheme in Wireless LANs,” IEEE Electron. Lett., vol. 39, no. 1, pp. 99–100, 2003.
[8] P. M. Soni and A. Chockalingam, “Analysis of Link-Layer backoff Schemes on Point-to-Point Markov Fading Links,” IEEE Trans. Commun., vol. 51, no. 1, pp. 29–32, 2003.
[9] C. Wang, B. Li, and L. Li, “A New Collision Resolution Mechanism to Enhance the Performance of IEEE 802.11 DCF,” IEEE Trans. Vehicular Technology, vol. 53, no. 4, pp. 1235–1246, 2004.
[10] Q. Pang, S. C. Law, J. Y. B. Lee, and V. C. M. Leuang, “Performance Evaluation of an Adaptive Backoff Scheme for WLAN,” Wireless Communication and Mobile Computing, vol. 4, no. 8, pp. 867–879, 2004.
[11] G. Bianchi and I. Tinnirello, “Kalman Filter Estimation of the Number of Competing Terminals in an IEEE 802.11 Network,” Proc. Infocom 2003, vol. 2, pp. 844–852, Mar. 2003.
[12] A. L. Toledo, T. Vercauteren, and X. Wang, “Adaptive Optimization of IEEE 802.11 DCF Based on Bayesian Estimation of the Number of Competing Terminals,” IEEE Trans. Mobile Computing, vol. 5, no. 9, pp. 1283–1296, 2006.
[13] J.-S. Kim, E. Serpedin, and D.-R. Shin,”Improved Particle Filtering-Based Estimation of the Number of Competing Stations in IEEE 802.11 Network,” IEEE Signal Processing Lett., vol. 15, pp. 87–90, 2008.
[14] H. Martin, R. Franck, G. Romaric, and D. Andrzej, “Idle Sense: An Optimal Access Method for High Throughput and Fairness in Rate Diverse Wireless LANs,” Proc. SIGCOMM ’05, vol. 35, no. 4, pp. 121–132, 2005.
[15] Y. Xiao, “Throughput and Delay Limits of IEEE 802.11,” IEEE Communication Lett., vol. 6, no 8, pp. 355-357, Aug. 2002..
[16] H. Wu, P. Yong, L. Kepting, C. Shiduan, and M. Jian, “Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement,” Proc. INFOCOM 2002, pp. 599-607, Jun. 2002.
[17] F. Cali’, M. Conti, and E. Gregori, “Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit,” IEEE/ACM Trans. Networking, vol. 8, no. 6, p.p. 785-799, 2000..
[18] IEEE 802.11 WG. Part 11 (1999): wireless LAN medium access control (MAC) and physical (PHY) specifications: high-speed physical layer in the 5 GHz band, IEEE 802.11a.
[19] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems,” DEC Research Report TR-301, 1984.
[20] Q. Pang, Victor C. M. Leung, and S. C. Liew, “Improvement of WLAN Contention Resolution by Loss Differentiation,” IEEE Trans. Wireless Communications, vol. 5, no. 12, Dec. 2006.
[21] M. Heusse, F. Roussear, G. Berger-Sabbatel, and A. Duda, “Performance Anomaly of 802.11b.” Proc. IEEE INFOCOM 2003, San Francisco, CA, USA, Mar., pp. 836–843, 2003.
[22] H. Balakrishnan and V. N. Pamanabhan, “How Network Asymmetry Affects TCP,” IEEE Commun. Mag., vol. 39, no. 4, pp. 60–67, Apr. 2001.
[23] J. Freitag, N.L.S. da Fonseca, and J.F. de Rezende, “Tuning of 802.11e Network Parameters,” IEEE Commun. Lett., vol. 10, no.8, pp.611– 613, Aug. 2006.
[24] F. Keceli, I. Inan, and E. Ayanoglu, “Weighted Fair Uplink/Downlink Access Provisioning in IEEE 802.11e WLANs,” IEEE Int. Conf. Commun. ICC’08, pp. 2473–2479, May. 2008.
[25] S. Shin and H. Schulzrinne, ”Balancing Uplink and Downlink Delay of VoIP Traffic in WLANs Using Adaptive Priority Control (APC),” Proc. The Third International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks, Aug. 2006.
[26] IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements, IEEE Std 802.11e-2005 (Amendment to IEEE Std 802.11, 1999 Edition (Reaff. 2003) pp. 1 – 189, 2005.
[27] C. Casetti and C. F. Chiasserini, ”Improving Fairness and Throughput for Voice Traffic in 802.11e EDCA,” Proc. 15th IEEE Int. Symp. PIMRC,vol. 1, pp. 525–530, Sept. 2004.
[28] J. Jeong, S. Choi, and C.-K. Kim, “Achieving Weighted Fairness Between Uplink and Downlink in IEEE 802.11 DCF-based WLANs,” Proc. The Second International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks, pp. 10–19, Aug. 2005.
[29] S. W. Kim, B.-S. Kim, and Y. Fang, “Downlink and Uplink Resource Allocation in IEEE 802.11 Wireless LANs,” IEEE Trans. Veh. Technol., vol. 54, no. 1, pp. 320–327, Jan. 2005.
[30] E. Lopez-Aguilera, M. Heusse, Y. Grunenberger, F. Rousseau, A. Duda, and J. Casademont, “An Asymmetric Access Point for Solving the Unfairness Problem in WLANs,” IEEE Trans. Mobile Comput., vol. 7, no. 10, pp. 1213–1227, Oct. 2008.
[31] B. Abeysekera, T. Matsuda, and T. Takine, “Dynamic Contention Window Control Mechanism to Achieve Fairness between Uplink and Downlink Flows in IEEE 802.11 Wireless LANs,” IEEE Trans. Wireless Commun., vol. 7, no. 9, pp. 3517–3525, Sept. 2008.
[32] D. Gao, J. Cai, C. H. Foh, C.-T. Lau, and K. N. Ngan, “Improving WLAN VoIP Capacity through Service Differentiation,” IEEE Trans. Veh. Technol., vol. 57, no. 1, pp. 465–474, Jan. 2008.
[33] H. Kim, S. Yun, I. Kang, and S. Bahk, “Resolving 802.11 Performance Anomalies through QoS Differentiation,” IEEE Commun. Lett., vol. 9, no. 7, pp. 655 – 657, July 2005.
[34] D.-Y. Yang, T.-J. Lee, K. Jang, J.-B. Chang, and S. Choi, “Performance Enhancement of Multi-Rate IEEE 802.11 WLANs with Geographically-Scattered Stations,” IEEE Trans. Mobile Comput., vol. 5, no. 7, pp. 906–919. July 2006.
[35] L. Luo, M. Gruteser, and H. Liu, “Achieving Temporal Fairness in Multi-Rate 802.11 WLANs with Capture Effect,” Proc. IEEE Int. Conf. Commun. ICC’08, pp. 2496–2501, May 2008.
[36] O. Abu-Sharkh and A. H. Twefik, “Throughput Evaluation and Enhancement in 802.11 WLANs with Access Point,” Proc. IEEE VTC–Spring, 2005, vol. 2, pp. 1338–1341, June 2005.
[37] Q. Ni, G. Cantieni, C. Barakat, T. Turletti, “Performance Analysis under Finite Load and Improvements for Multirate 802.11,” Elsevier Computer Communications Journal, vol. 28, no. 10, pp. 1095–1109, June 2005.
[38] C. Wang, H. Lo, S. Fang, “Fairness analysis of throughput and delay in WLAN environments with channel diversities,” EURASIP Journal on Wireless Communications and Networking, doi:10.1186/1687-1499-2011-42, 2011.
[39] A. L. Toledo, T. Vercauteren, and X. Wang, “Adaptive Optimization of IEEE 802.11 DCF Based on Bayesian Estimation of the Number of Competing Terminals,” IEEE Trans. Mobile Comput., vol. 5, pp. 1283–1296, Sept. 2006.
[40] D. Chiu and R. Jain, “Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks,” J. Computer Networks and ISDN Systems, vol. 17, no. 1, June 1989.
[41] Q. Xiu and M. Hamdi, “Smart Sender: A Practical Rate Adaptation Algorithm for Multirate IEEE 802.11 WLANs,” IEEE Trans. Wireless Commun., vol. 7, pp. 1764–1775, 2008.
[42] A. Kamerman and L. Monteban, “WaveLAN-II: A High-Performance Wireless LAN for the Unlicensed Band,” Bell Labs Technical Journal, pp. 118–133, 1997.
[43] J. del Prado Pavon and S. Choi, “Link Adaptation Strategy for IEEE 802.11 WLAN via Received Signal Strength Measurement,” in Proc. IEEE Int. Conf. Commun. ICC’03, pp. 1108–1113, 2003.
[44] W. Lim, D. Kim, and Y. Suh, “Achieving Fairness Between Uplink and Downlink Flows in Error-Prone WLANs,” IEEE Communication Lett., vol. 15, pp. 822–824, 2011.