簡易檢索 / 詳目顯示

研究生: 陳依承
Chen, Yi-Cheng
論文名稱: 高雄厝住宅大樓的碳足跡評估
Carbon Footprint Assessment of Kaohsiung LOHAS Building
指導教授: 蔡耀賢
Tsay, Yaw-Shyan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系碩士在職專班
Department of Architecture (on the job class)
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 94
中文關鍵詞: 建築工程碳足跡高雄厝碳排放策略迴歸分析
外文關鍵詞: construction project carbon footprint, Kaohsiung LOHAS Building, carbon emission strategy, regression analysis
相關次數: 點閱:76下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建築產業佔全球最終能源消費總量的1/3,因此建築產業發展在減少全球碳排放策略上為關鍵的因素,而台灣更以「全球2050淨零轉型」為目標,但以經濟部能源局2021年10月份的數據顯示,台灣目前在住宅部門的減碳數據上並沒有明顯的降低的趨勢。高雄市為因應越來越頻繁的極端氣候、解決炎熱的氣候及突然暴雨導致的洪水,從101年開始,高雄市政府工務局開始執行高雄厝計畫,更於103年訂定「高雄厝設計及鼓勵回饋辦法」,透過鼓勵申請人設置綠能設施、景觀陽台及老年人口的通用化設施後獎勵申請人額外的容積樓地板面積,法令推行至今已邁入第9年,卻沒有可靠的數據顯示高雄厝住宅在台灣住宅部門的減碳數據上是否有顯著的貢獻。因此,本研究希望藉由建築生命週期碳排放量的計算、分析與評估,提出能讓高雄厝住宅成為有效降低台灣住宅部門碳排放的策略,提供未來高雄市政府在訂定溫室氣體減量管制策略自治條例上的參考。

    本研究以實際40案15樓的高雄厝住宅大樓為研究對象,利用建築工程碳足跡評估系統(BCFd)對已領有建築物使用執照之高雄厝住宅大樓進行碳足跡的揭露,並綜整各案減碳因子的相關性統計分析,研究分為建築規模、建築外殼設計及人口密度三大項,細分出室內樓地板面積、單元戶樓地板面積、地下室開挖率、通風潛力(VP)、等價開窗率(Req)及高雄厝獎勵設施等各項減碳影響因子進行相關性分析,提出主要影響建築物碳排放量的相關性因子,做為日後增加「高雄市高雄厝設計及鼓勵回饋辦法」住宅大樓減碳量之政策修訂方向之依據。

    研究結果發現,高雄厝計畫執行至今,在降低建築總碳足跡排放量上,與已取得LCBA碳足跡認證住宅案例台南沙崙智慧綠能循環住宅園區(減碳比:22.4%)之減碳比仍有10%以上的差距,因此本研究運用簡單迴歸分析及獨立樣本T檢定對建築規模、建築外殼設計及人口密度三大項與建築碳足跡的評估後,發現當樓高15層的高雄厝住宅大樓室內總樓地板面積大於10000m2、各戶平均樓地板面積應介於100m2至120m2及等價開窗率(Req)小於0.08時的設計數據較能提高建築物的減碳百分比,但現有的高雄厝法令尚無進行碳揭露的作為,而獎勵設置項目於減碳量影響甚小,因此本研究建議可以針對高雄厝住大樓規劃設計增加建築物的減碳量做出明確的規範,有效降低高雄厝建築的總碳排放量。

    The construction industry accounts for 1/3 of the total global final energy consumption. Therefore, the development of the construction industry is a key factor in the strategy of reducing global carbon emissions. According to the October 2021 data from the Energy Bureau of the Taiwan Ministry of Economic Affairs, Taiwan is currently in the residential sector. There is no obvious downward trend in carbon reduction data. In order to cope with the more and more frequent extreme weather, to solve the hot weather and floods caused by sudden rainstorms, the Kaohsiung City Government Works Bureau began to implement the Kaohsiung LOHAS Building Project in 2010, and in 2010, the " Kaohsiung LOHAS Building Design" was established. and encouragement and feedback measures”, by encouraging applicants to set up green energy facilities, landscape balconies and generalized facilities for the elderly, and then reward applicants with additional volume floor area. The implementation of the law has entered its ninth year, but there is no reliable data. Shows whether Kaohsiung LOHAS Building has a significant contribution to carbon reduction data in Taiwan's residential sector. Therefore, this study hopes to put forward a strategy to make Kaohsiung LOHAS Building an effective way to reduce carbon emissions in Taiwan's residential sector through the calculation, analysis and evaluation of carbon emissions in the life cycle of buildings. References on self-government regulations.
    This study takes the actual 40 cases of Kaohsiung Cuo residential buildings on the 15th floor as the research object, and uses the Construction Carbon Footprint Assessment System (BCFd) to calculate the carbon footprint of the Kaohsiung Cuo residential buildings that have obtained the building use license, and calculates the carbon reduction factor of each case. Statistical analysis of the correlation between the research is divided into four major items: building scale, ventilation design, population density and Kaohsiung housing incentive measures, subdivided into indoor floor area, unit floor area, basement excavation rate, ventilation potential (VP), Correlation analysis was carried out on various carbon reduction impact factors such as the equivalent window opening rate (Req) and Kaohsiung LOHAS Building incentive facilities, and the correlation factors that mainly affect the carbon emissions of buildings were proposed as a reference for future additions to the "Kaohsiung City Kaohsiung LOHAS Building Design and Encouragement". Feedback Measures" is the basis for the revision direction of the policy on carbon reduction in residential buildings.
    The results of the study found that since the implementation of the Kaohsiung LOHAS Building Project, there is still a gap of more than 10% in reducing the carbon footprint of buildings and the carbon reduction ratio of the Tainan Shalun Smart Green Energy Recycling Residential Park, which has obtained the LCBA carbon footprint certification. Therefore, this study uses simple regression analysis and independent sample T test to evaluate the building scale, building shell design and population density and the carbon footprint of the building. 10000m2, the average floor area of each household should be between 100m2 and 120m2, and the design data when the equivalent window opening rate (Req) is less than 0.08 can improve the carbon reduction percentage of the building, but the existing Kaohsiung LOHAS Building Act has not yet disclosed carbon disclosure. However, the incentive setting project has little impact on carbon reduction. Therefore, this study suggests that clear specifications can be made to increase the carbon reduction of the Kaohsiung residence building planning and design, and effectively reduce the total carbon emissions of the Kaohsiung residence building.

    第一章 緒論1 1-1研究背景與動機1 1-2研究目的6 1-3研究範圍與流程7 1-3-1 研究範圍7 1-3-2 研究流程8 第二章 文獻回顧與相關理論9 2-1生命週期評估定義9 2-1-1 ISO-14040生命週期評估定義 9 2-1-2 建築生命週期碳排評估定義9 2-2建築碳足跡認證12 2-2-1 BCF系統四階段認證評估12 2-2-2 CFP-PCR建築物碳足跡產品類別規則12 2-3國際碳定價(Carbon price)制度14 2-3-1碳權交易制度14 2-3-2碳費(碳稅)制度15 2-4臺灣低碳建築政策規範及高雄厝計畫15 2-4-1臺灣溫室氣體減量策略15 2-4-2各直轄市溫室氣體減量策略16 2-4-3臺灣綠建築及建築碳排認證系統18 2-4-4高雄厝設計及鼓勵回饋辦法立法目的21 2-4-5高雄厝計畫執行歷程23 第三章 研究方法25 3-1建築生命週期總碳足跡計算25 3-1-1碳足跡資料庫25 3-1-2 BCF系統總碳足跡計算26 3-1-3 新建與修繕更新工程資材碳足跡27 3-1-4 施工碳足跡 27 3-1-5建築使用耗能碳足跡27 3-1-6拆除及廢棄物處理碳足跡28 3-1-7自我舉證減碳量28 3-2分析方法28 第四章 高雄厝住宅大樓碳足跡綜合評估29 4-1高雄厝住宅大樓碳足跡計算成果29 4-2高雄厝集合住宅建築規模30 4-2-1 建築規模對總碳足跡的影響30 4-2-2 建築規模對每平方公尺碳足跡的影響34 4-2-3 建築規模對減碳量的影響 39 4-2-4 建築規模對減碳比的影響 43 4-3高雄厝集合住宅建築外殼設計48 4-3-1 建築外殼設計對總碳足跡的影響48 4-3-2 建築外殼設計對每平方公尺碳足跡的影響52 4-3-3 建築外殼設計對減碳量的影響 55 4-3-4 建築外殼設計對減碳比的影響 58 4-4高雄厝集合住宅使用人員密度61 4-4-1 使用人員密度對總碳足跡的影響61 4-4-2 使用人員密度對每平方公尺碳足跡的影響62 4-4-3 使用人員密度對減碳量的影響 63 4-4-4 使用人員密度對減碳比的影響 65 第五章 高雄厝住宅大樓碳足跡之減碳策略探討71 5-1高雄厝住宅大樓之低碳建築探討71 5-2分析結果小結71 第六章 結論與建議69 6-1研究結論與政策建議73 6-2分析與討論73 6-3後續研究建議74 參考文獻75 附錄78

    1. 行政院環境保護署,2022,臺灣 2050 淨零排放路徑及策略總說明。
    2. 經濟部,2018,經濟部辦理氣候變遷調適或溫室氣體研究管理與推動績效優良獎勵補助辦法。
    3. 新北市政府,2022,新北市政府辦理低碳社區標章認證制度作業要點。
    4. 臺北市政府,2010,臺北市工商業節能減碳輔導管理自治條例。
    5. 臺北市政府,2021,臺北市因應氣候變遷碳中和管理自治條例草案。
    6. 臺北市政府,2020,臺北市綠建築自治條例。
    7. 桃園市政府,2021,桃園市發展低碳綠色城市自治條例。
    8. 臺中市政府,2014,臺中市發展低碳城市自治條例。
    9. 臺中市政府,2016,變更臺中市都市計畫(水湳機場原址整體開發區)細部計畫(第一次通盤檢討)書。
    10. 臺南市政府,2020,臺南市低碳城市自治條例。
    11. 臺南市政府,2014,台南低碳城市推動成果報告書。
    12. 高雄市政府,2018,高雄市綠建築自治條例。
    13. 高雄市政府,2020,高雄市環境維護管理自治條例。
    14. 高雄市政府,2020,高雄市溫室氣體自主管理計畫實施辦法草案。
    15. 高雄市政府,2020,高雄市溫室氣體自主管理計畫作業指引。
    16. 高雄市政府工務局,2018,高雄市高雄厝設計及鼓勵回饋辦法。
    17. 高雄市政府工務局,2021,高雄厝綠建築推動計畫與成果分析。
    18. 高雄市政府工務局,2020,高雄厝健康建築活化計畫成果宣導專輯。
    19. 內政部營建署,2021,建築物節約能源設計技術規範。
    20. 林憲德,建築產業碳足跡,詹氏書局,2018。
    21. 內政部建築研究所,2019 綠建築評估手冊住宿類 RS。
    22. 內政部建築研究所,2022,綠建築評估手冊 - 建築能效評估系統(EEWH-BERS)。
    23. 行政院環境保護署,2015,碳足跡產品類別規則(CFP-PCR)建築物 Buildings。
    24. 行政院環境保護署,2020,我國溫室氣體減量推動辦理情形。
    25. 經濟部能源局,2021,109 年度我國燃料燃燒二氧化碳排放統計與分析。
    26. 經濟部能源局,2019,能源轉型白皮書。
    27. 台灣能源期刊,2021,從綠建築到淨零碳排建築 智慧永續的未來城市。
    28. 工業技術研究院,2021,世界能源展望報告。
    29. 低碳建築聯盟,2020,建築碳足跡認證-桃園市中壢區一號基地。
    30. 低碳建築聯盟,2020,建築碳足跡認證-沙崙智慧綠能循環住宅園區。
    31. 低碳建築聯盟,2020,建築碳足跡認證-高雄學府循環住宅新建工程。
    32. 低碳建築聯盟,2018,建築碳足跡認證-中國醫藥大學水湳校區宿舍大樓。
    33. 林弘傑,2016,建築碳足跡與綠建築標章評估之關聯性研究 -以透天住宅建築為例,逢甲大學建築系碩士論文。
    34. 簡佑哲,2018,新建建築工程減碳措施效益評估之研究 -以國立臺北科技大學精勤樓為例國立臺北科技大學建築系建築與都市設計碩士論文。
    35. 蕭玉珍,2017,校園宿舍永續發展與碳足跡盤查之研究,國立臺北科技大學土木工程系土木與防災碩士論文。
    36. 2021 GLOBAL STATUS REPORT FOR BUILDINGS AND CONSTRUCTION,2021,United Nations Environment Programme
    37. Climate Change 2007, the Sixth Assessment Report (AR6) of the United Nations Intergovernmental Panel on Climate Change
    38. Asia Pacific Embodied Carbon Primer,WorldGBC
    39. Global Consistency in Presenting Construction Life Cycle Costs and Carbon Emissions,2021,ICMS Coalition
    40. State and Trends of Carbon Pricing,2022,The World Bank
    41. Adalberth, K. (1997). Energy use during the life cycle of buildings: a method. Building and Environment, 32(4), 317-320.
    42. Basbagill, J., Flager, F., Lepech, M., & Fischer, M. (2013). Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Building and Environment, 60, 81-92.
    43. Tahmasebi, M. M., Banihashemi, S., & Hassanabadi, M. S. (2011). Assessment of the variation impacts of window on energy
    44. Aldy, J. E. (2015). Pricing climate risk mitigation. Nature Climate Change, 5(5), 396-398.
    45. Tao Gao, Qing Liu, Jianping Wang (2014), A comparative study of carbon footprint and assessment standards, International Journal of Low-Carbon Technologies,2014,237–243.
    46. Naga Dheeraj Kumar Reddy Chukka et al, Environmental Impact and Carbon Footprint Assessment of Sustainable Buildings: An Experimental Investigation, 2022,SAGE Publishing.
    47. Andriel Evandro Fenner (2018),The carbon footprint of buildings: A review of methodologies and applications, Renewable and Sustainable Energy Reviews,2018, 1142-1152.
    48. Maria Rosa Trovato,2020, Life-Cycle Assessment and Monetary Measurements for the Carbon Footprint Reduction of Public Buildings, Department of Civil Engineering and Architecture, University of Catania.
    49. J. Solís-Guzmán, A. Martínez-Rocamora & M. Marrero ,2014,Methodology for Determining the Carbon Footprint of the Construction of Residential Buildings, Assessment of Carbon Footprint in Different Industrial Sectors,49-83.
    50. Zahra S. Moussavi Nadoushani AliAkbarnezhad,2015, Effects of structural system on the life cycle carbon footprint of buildings, Energy and Buildings,2015,337-346.
    51. Nuri CihatOnatMuratKucukvarOmerTatari,2014,Scope-based carbon footprint analysis of U.S. residential and commercial buildings: An input–output hybrid life cycle assessment approach, Building and Environment,2014,53-62.
    52. EndreTvinnereim, MichaelMehling,2018, Carbon pricing and deep decarbonization, Energy Policy,2018,185-189.
    53. Easwaran Narassimhan,Kelly S. Gallagher,Stefan Koester &Julio Rivera Alejo,2018, Carbon pricing in practice: a review of existing emissions trading systems, Climate Policy,2018,967-991.

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE