簡易檢索 / 詳目顯示

研究生: 周祖亮
Zhou, Zu-Liang
論文名稱: IgA修飾之PLGA奈米粒子做為口服傳遞系統以增強受體介導之跨細胞運送
IgA-conjugated PLGA nanoparticles as oral delivery systems to enhance receptor-mediated transcytosis
指導教授: 陳美瑾
Chen, Mei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 123
中文關鍵詞: PLGA奈米粒子口服給藥系統受體介導轉胞吞運送上皮細胞免疫蛋白球A
外文關鍵詞: PLGA nanoparticles, Oral delivery, Receptor mediated transcytosis, Epithelial cells, Immunoglobulin A (IgA)
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口服給藥在藥物傳輸系統中具有高度的病患依從性與方便性的優勢,並且在商業上具有巨大的價值。然而,許多藥物在消化道中存在溶解度差、滲透率差等問題,導致其生物利用度不佳。聚乳酸-羥基乙酸共聚物(Poly (lactic-co-glycolic acid), PLGA)以奈米粒子形式在許多研究中被證實能夠保護藥物在口服給藥路徑中免於流失,並避免藥物在消化道中被豐富的酵素分解。然而,PLGA奈米粒子在腸道上皮細胞中仍然難以被內吞並轉運至體循環中。本研究利用免疫球蛋白A (Immunoglobulin A, IgA)以二聚體形式在腸道上皮細胞上透過受體介導轉胞吞運送(receptor-mediated transcytosis)的特性,增加生物利用度。藥物載體的設計利用奈米沉澱法製作PLGA奈米粒子,並透過碳二亞胺化學法使IgA共價結合在PLGA奈米粒子表面上。
    本研究製作兩種不同IgA共價結合量的奈米粒子,分別為Low IgA-NP (1mg的PLGA表面有744.53 ± 32.65 ng的IgA)與High IgA-NP (1mg的PLGA表面有1683.71 ± 70.65 ng的IgA),在人結腸癌細胞(C2Bbe1)轉胞吞實驗顯示Low IgA-NP的轉胞吞效率較佳,因此後續實驗以Low IgA-NP進行。結果顯示,Low IgA-NP具有均一的粒徑分佈與能夠使奈米粒子穩定分散的表面電位(> ± 30 mV) ,粒徑為175.9 ± 13.25 nm,PdI為0.07 ± 0.03,表面電位為 -36.6 ± 4.61 mV。並且於含有酵素的模擬腸胃液下,Low IgA-NP也呈現均勻的粒徑分佈,PdI為0.15 ± 0.04。IgA共價結合於PLGA奈米粒子表面上的含量較加入模擬腸胃液前仍保留65.47 ± 7.39%。然而,在SEM影像中發現經過含有酵素的模擬腸胃液後,Low IgA-NP的形貌明顯改變,並造成了OVA釋放含量與未加酵素的模擬腸胃液組別相比明顯從28.19 ± 0.97%上升至64.54 ± 4.38%。
    在人結腸癌細胞(C2Bbe1)轉胞吞運送的實驗中,在48小時內Low IgA-NP相較OVA NP轉胞吞運送效率顯著從3.97 ± 2.60%提升至50.08 ± 2.69%,並在共軛焦顯微鏡與定量螢光強度的結果,觀察到隨著奈米粒子培養的時間增加,Low IgA-NP有轉胞吞運送的現象。因此以上研究證實,透過IgA共價結合的PLGA奈米粒子能夠於腸道上皮細胞轉胞吞運送,有望成為提升口服藥物效率的一種潛在策略,為未來藥物傳輸系統的開發提供了新的方向和可能性。

    Oral drug delivery offers advantages like patient compliance and commercial value but faces challenges with drug solubility and low bioavailability due to degradation in the gastrointestinal tract. While PLGA nanoparticles protect drugs from enzymatic breakdown, they struggle with transcytosis across intestinal epithelial cells. This study addresses this issue by using dimeric Immunoglobulin A (IgA) to enhance receptor-mediated transcytosis. PLGA nanoparticles were synthesized via nanoprecipitation, and IgA was conjugated to their surface using carbodiimide chemistry. This study developed two types of nanoparticles with varying IgA conjugation amounts: Low IgA-NP (744.53 ± 32.65 ng/mg PLGA) and High IgA-NP (1683.71 ± 70.65 ng/mg PLGA). Transcytosis experiments demonstrated that Low IgA-NP exhibited better transcytosis efficiency, thus subsequent experiments were conducted with Low IgA-NP. The results demonstrated that Low IgA-NP exhibited a uniform particle size distribution and a significant zeta potential that enabled stable dispersion of the nanoparticles (> ± 30 mV). The particle size was 175.9 ± 13.25 nm, PdI was 0.07 ± 0.03, and zeta potential was -36.6 ± 4.61 mV. Moreover, in simulated gastrointestinal fluid with enzymes, Low IgA-NP also exhibited a uniform particle size distribution, with a PdI of 0.15 ± 0.04. The amount of IgA conjugated to the PLGA nanoparticles was maintained at 65.47 ± 7.39%. However, SEM images revealed that the morphology of Low IgA-NP significantly changed after exposure to enzyme-containing simulated gastrointestinal fluid, resulting in a significant increase in OVA release from 28.19 ± 0.97% to 64.54 ± 4.38% compared to the group without enzymes. In transcytosis experiments using human colon cells (C2Bbe1), the transcytosis efficiency of Low IgA-NP was significantly improved from 3.97 ± 2.60% to 50.08 ± 2.69% over 48 hours compared to OVA NP. Confocal microscopy and quantitative fluorescence intensity results indicated that Low IgA-NP exhibited the phenomenon of transcytosis. Therefore, this study confirms that PLGA nanoparticles conjugated with IgA can facilitate transcytosis in intestinal epithelial cells, promising to be a potential strategy for enhancing oral drug delivery efficiency. This provides new directions and possibilities for the development of future drug delivery systems.

    摘要 I Abstract XVI 致謝 XVII 目錄 XVIII 表目錄 XXII 圖目錄 XXIV 附錄表 XXVIII 附錄圖 XXIX 第一章 緒論 1 1.1. 口服給藥系統 1 1.1.1. 口服給藥之優勢 1 1.1.2. 口服給藥路徑(Oral drug delivery) 2 1.1.3. 腸胃道屏障於口服疫苗之影響 3 1.2. 腸道運送物質機制 4 1.2.1. 細胞旁間隙運送(Paracellular pathway) 5 1.2.2. M細胞介導運送(Microfold cell mediated pathway) 6 1.2.3. 跨細胞運送途徑(Transcellular pathway) 6 1.2.4. 轉胞吞運送途徑(Transcytosis pathway) 7 1.3. 運用免疫球蛋白A (Immunoglobulin A, IgA) 受體介導轉胞吞運送 11 1.3.1. IgA介紹 11 1.3.2. IgA轉胞吞運送(Transcytosis)機制 13 1.4. 聚乳酸-羥基乙酸共聚物(Poly (lactic-co-glycolic acid), PLGA) 16 1.4.1. PLGA介紹 16 1.4.2. PLGA奈米粒子之應用 16 1.4.3. 製作PLGA奈米粒子原理 18 1.5. 未來應用 19 1.6. 研究目的 20 1.7. 研究架構 23 第二章 實驗材料及方法 24 2.1. 實驗藥品 24 2.2. 實驗耗材 25 2.3. 儀器設備 26 2.4. 製作PLGA奈米粒子(PLGA NP) 27 2.4.1. 奈米沉澱法(Nanoprecipitation methods) 27 2.4.2. 乳化溶劑揮發法(Emulsification-solvent Evaporation Methods) 28 2.4.3. 製作包覆OVA之PLGA 奈米粒子(OVA NP) 29 2.5. PLGA奈米粒子物性分析 30 2.5.1. 動態光散射儀(Dynamic light scattering, DLS) 30 2.5.2. 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 30 2.5.3. 場發式掃描電子顯微鏡(Scanning electron microscopy, SEM) 30 2.6. PLGA NP穩定性測試 31 2.6.1. 在水溶液下保存能力測試 31 2.6.2. 含有凍乾保護劑之PLGA奈米粒子保存能力測試 31 2.6.3. 冷凍乾燥後奈米粒子穩定性測試 31 2.6.4. 滲透壓(Osmolarity)測定 31 2.7. 奈米粒子包覆OVA含量之定量分析 32 2.8. IgA共價結合PLGA奈米粒子(IgA-NP) 33 2.8.1. 碳二亞胺化學法 33 2.8.2. IgA共價結合效率(conjugation efficiency, CE) 34 2.9. 模擬腸道上皮細胞之轉胞吞運送實驗 35 2.9.1. 細胞培養 35 2.9.2. 細胞毒性測試 36 2.9.3. 體外實驗-上皮細胞模型建立 37 2.9.4. 體外實驗-轉胞吞運送(transcytosis)實驗 39 2.9.4.1.奈米粒子轉胞吞運送後之物理性質與定量分析 39 2.9.4.2.拍攝奈米粒子於C2Bbe1細胞轉胞吞運送之影像 40 2.10. 模擬口服給藥路徑之藥物釋放測試 41 2.11. 奈米粒子於模擬腸胃液下穩定性測試 42 第三章 結果與討論 43 3.1. PLGA NP參數最適化 43 3.1.1. 比較奈米沉澱法與乳化溶劑揮發法差異 43 3.1.2. 水相與油相體積調整 45 3.1.3. 界面活性劑參數調整 46 3.2. PLGA NP穩定性測試 48 3.2.1. PLGA NP於水溶液下保存穩定性測試 48 3.2.2. PLGA NP使用醣類為凍乾保護劑之保存穩定性測試 49 3.2.3. PLGA NP凍乾後重新回溶後穩定性測試 54 3.2.4. PLGA NP於凍乾保護劑下之滲透壓測定 55 3.3. 定量奈米粒子包覆OVA之藥物含量 56 3.4. 利用碳二亞胺化學法將IgA共價結合於PLGA奈米粒子表面 58 3.5. PLGA奈米粒子形貌 61 3.6. 細胞毒性測試 61 3.7. 模擬腸道上皮細胞之轉胞吞運送實驗 63 3.7.1. 建立腸道上皮細胞模型 63 3.7.2. 轉胞吞運送實驗 65 3.7.2.1.奈米粒子轉胞吞運送之物理性質 65 3.7.2.2.奈米粒子轉胞吞運送之定量分析 67 3.7.2.3.共軛焦雷射掃描顯微鏡(Confocal Laser Scanning Microscopy)觀察奈米粒子轉胞吞運送 69 3.8. 模擬口服給藥路徑之體外藥物釋放測試 72 3.9. 模擬口服給藥路徑奈米粒子之穩定性測試 74 3.9.1. 奈米粒子回溶於模擬腸胃液後之SEM影像 75 第四章 結論與未來展望 77 第五章 參考文獻 79 附錄 87

    1. Zhang, L., et al., Nanocarriers for oral drug delivery. Journal of drug targeting, 2013. 21(6): p. 515-527.
    2. Malhaire, H., et al., How to design the surface of peptide-loaded nanoparticles for efficient oral bioavailability? Advanced drug delivery reviews, 2016. 106: p. 320-336.
    3. Allémann, E., J.-C. Leroux, and R. Gurny, Polymeric nano-and microparticles for the oral delivery of peptides and peptidomimetics. Advanced drug delivery reviews, 1998. 34(2-3): p. 171-189.
    4. Shahgordi, S., et al., Immune responses modulation by curcumin and allergen encapsulated into PLGA nanoparticles in mice model of rhinitis allergic through sublingual immunotherapy. International immunopharmacology, 2020. 84: p. 106525.
    5. Florek, J., R. Caillard, and F. Kleitz, Evaluation of mesoporous silica nanoparticles for oral drug delivery–current status and perspective of MSNs drug carriers. Nanoscale, 2017. 9(40): p. 15252-15277.
    6. Alqahtani, M.S., et al., Advances in oral drug delivery. Frontiers in pharmacology, 2021. 12: p. 618411.
    7. Hans, M.L. and A.M. Lowman, Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science, 2002. 6(4): p. 319-327.
    8. Crater, J.S. and R.L. Carrier, Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromolecular bioscience, 2010. 10(12): p. 1473-1483.
    9. Yun, Y., Y.W. Cho, and K. Park, Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Advanced drug delivery reviews, 2013. 65(6): p. 822-832.
    10. Yu, M., et al., Advances in the transepithelial transport of nanoparticles. Drug discovery today, 2016. 21(7): p. 1155-1161.
    11. Madara, J.L., Regulation of the movement of solutes across tight junctions. Annual review of physiology, 1998. 60(1): p. 143-159.
    12. Laksitorini, M., et al., Pathways and progress in improving drug delivery through the intestinal mucosa and blood–brain barriers. Therapeutic delivery, 2014. 5(10): p. 1143-1163.
    13. Clark, M.A., B.H. Hirst, and M.A. Jepson, Lectin-mediated mucosal delivery of drugs and microparticles. Advanced drug delivery reviews, 2000. 43(2-3): p. 207-223.
    14. Lelouard, H., et al., Mucin-related epitopes distinguish M cells and enterocytes in rabbit appendix and Peyer’s patches. Infection and immunity, 1999. 67(1): p. 357-367.
    15. Madara, J.L., The chameleon within: improving antigen delivery. Science, 1997. 277(5328): p. 910-911.
    16. Ensign, L.M., R. Cone, and J. Hanes, Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Advanced drug delivery reviews, 2012. 64(6): p. 557-570.
    17. Ejazi, S.A., R. Louisthelmy, and K. Maisel, Mechanisms of nanoparticle transport across intestinal tissue: an oral delivery perspective. ACS nano, 2023. 17(14): p. 13044-13061.
    18. He, B., et al., The transport pathways of polymer nanoparticles in MDCK epithelial cells. Biomaterials, 2013. 34(17): p. 4309-4326.
    19. He, B., et al., The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials, 2013. 34(25): p. 6082-6098.
    20. Qian, Z.M., et al., Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacological reviews, 2002. 54(4): p. 561-587.
    21. Zhu, S., et al., Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec). Drug Delivery, 2016. 23(6): p. 1980-1991.
    22. Dautry-Varsat, A., A. Ciechanover, and H.F. Lodish, pH and the recycling of transferrin during receptor-mediated endocytosis. Proceedings of the National Academy of Sciences, 1983. 80(8): p. 2258-2262.
    23. Fan, W., et al., Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials, 2018. 151: p. 13-23.
    24. Seikrit, C. and O. Pabst. The immune landscape of IgA induction in the gut. in Seminars in Immunopathology. 2021. Springer.
    25. Woof, J. and M. Russell, Structure and function relationships in IgA. Mucosal immunology, 2011. 4(6): p. 590-597.
    26. Dotzauer, A., et al., Hepatitis A virus-specific immunoglobulin A mediates infection of hepatocytes with hepatitis A virus via the asialoglycoprotein receptor. Journal of virology, 2000. 74(23): p. 10950-10957.
    27. Bomsel, M., et al., Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dIgA or IgM. Immunity, 1998. 9(2): p. 277-287.
    28. Pracht, K., et al., The intestine: A highly dynamic microenvironment for IgA plasma cells. Frontiers in Immunology, 2023. 14: p. 1114348.
    29. Fung, K.Y., G.D. Fairn, and W.L. Lee, Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic, 2018. 19(1): p. 5-18.
    30. Ménard, S., N. Cerf-Bensussan, and M. Heyman, Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal immunology, 2010. 3(3): p. 247-259.
    31. Matysiak-Budnik, T., et al., Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. The Journal of experimental medicine, 2008. 205(1): p. 143-154.
    32. Mantis, N.J., N. Rol, and B. Corthésy, Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal immunology, 2011. 4(6): p. 603-611.
    33. Kumari, A., S.K. Yadav, and S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and surfaces B: biointerfaces, 2010. 75(1): p. 1-18.
    34. Danhier, F., et al., PLGA-based nanoparticles: an overview of biomedical applications. Journal of controlled release, 2012. 161(2): p. 505-522.
    35. Wischke, C. and S.P. Schwendeman, Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. International Journal of pharmaceutics, 2008. 364(2): p. 298-327.
    36. Akl, M.A., et al., Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. Journal of Drug Delivery Science and Technology, 2016. 32: p. 10-20.
    37. Wang, F., et al., Paeonol-loaded PLGA nanoparticles as an oral drug delivery system: Design, optimization and evaluation. International journal of pharmaceutics, 2021. 602: 120617.
    38. Bee, S.-L., et al., Approaches to improve therapeutic efficacy of biodegradable PLA/PLGA microspheres: a review. Polymer reviews, 2018. 58(3): p. 495-536.
    39. Akdis, C.A. and M. Akdis, Mechanisms of immune tolerance to allergens: role of IL-10 and Tregs. The Journal of clinical investigation, 2014. 124(11): p. 4678-4680.
    40. Valenta, R., et al., Allergen‐specific immunotherapy: from therapeutic vaccines to prophylactic approaches. Journal of internal medicine, 2012. 272(2): p. 144-157.
    41. Gandhi, G.R., et al., Modulation of interleukin expression by medicinal plants and their secondary metabolites: a systematic review on anti-asthmatic and immunopharmacological mechanisms. Phytomedicine, 2020. 70: p. 153-229.
    42. Foster, P.S., et al., Modeling TH 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunological reviews, 2017. 278(1): p. 20-40.
    43. Shakya, A.K., C.H. Lee, and H.S. Gill, Microneedle-mediated allergen-specific immunotherapy for the treatment of airway allergy in mice. Molecular Pharmaceutics, 2020. 17(8): p. 3033-3042.
    44. Cunha, A., et al., PLGA-based nanoparticles for neuroprotective drug delivery in neurodegenerative diseases. Pharmaceutics, 2021. 13(7): p. 1042.
    45. Liu, X., et al., Angiopep-2-functionalized nanoparticles enhance transport of protein drugs across intestinal epithelia by self-regulation of targeted receptors. Biomaterials Science, 2021. 9(8): p. 2903-2916.
    46. Kumari, M., A. Acharya, and P.T. Krishnamurthy, Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics. Beilstein Journal of Nanotechnology, 2023. 14(1): p. 912-926.
    47. Halder, A., et al., Lactoferrin-tethered betulinic acid nanoparticles promote rapid delivery and cell death in triple negative breast and laryngeal cancer cells. Artificial Cells, Nanomedicine, and Biotechnology, 2020. 48(1): p. 1362-1371.
    48. Kovacs-Nolan, J., M. Phillips, and Y. Mine, Advances in the value of eggs and egg components for human health. Journal of agricultural and food chemistry, 2005. 53(22): p. 8421-8431.
    49. Fonte, P., et al., Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Biomacromolecules, 2014. 15(10): p. 3753-3765.
    50. Jiang, B., et al., Eco-innovation in reusing food by-products: Separation of ovalbumin from salted egg white using aqueous two-phase system of PEG 1000/(NH4) 2SO4. Polymers, 2019. 11(2): p. 238.
    51. Fluorescein Isothiocyanate (FITC). (n.d.). AAT Bioquest. https://www.aatbio.com/resources/application-notes/fluorescein-isothiocyanate-fitc
    52. Neves, A.R., et al., Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: relevance for oral drug delivery. Journal of colloid and interface science, 2016. 463: p. 258-265.
    53. Ma, T., et al., Homogeneous PLGA-lipid nanoparticle as a promising oral vaccine delivery system for ovalbumin. asian journal of pharmaceutical sciences, 2014. 9(3): p. 129-136.
    54. Danaei, M., et al., Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018. 10(2): p. 57.
    55. Hernández-Giottonini, K.Y., et al., PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters. Rsc Advances, 2020. 10(8): p. 4218-4231.
    56. Cao, J., et al., Development of PLGA micro-and nanorods with high capacity of surface ligand conjugation for enhanced targeted delivery. Asian Journal of Pharmaceutical Sciences, 2019. 14(1): p. 86-94.
    57. Lamprecht, A., et al., Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. International journal of pharmaceutics, 2000. 196(2): p. 177-182.
    58. Chorny, M., et al., Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. Journal of controlled release, 2002. 83(3): p. 389-400.
    59. McCall, R.L. and R.W. Sirianni, PLGA nanoparticles formed by single-or double-emulsion with vitamin E-TPGS. JoVE (Journal of Visualized Experiments), 2013(82): 51015.
    60. Ramalho, M., et al. PLGA nanoparticles for calcitriol delivery. in 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG). 2015. IEEE.
    61. Prasad, S., et al., Optimization of stability, encapsulation, release, and cross-priming of tumor antigen-containing PLGA nanoparticles. Pharmaceutical research, 2012. 29: p. 2565-2577.
    62. Menon, J.U., et al., Effects of surfactants on the properties of PLGA nanoparticles. Journal of Biomedical Materials Research Part A, 2012. 100A(8): p. 1998-2005.
    63. Holzer, M., et al., Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage. European Journal of Pharmaceutics and Biopharmaceutics, 2009. 72(2): p. 428-437.
    64. Yin, Y., et al., Preparation and evaluation of lectin-conjugated PLGA nanoparticles for oral delivery of thymopentin. Journal of controlled release, 2006. 116(3): p. 337-345.
    65. Armitage, C.W., et al., Evaluation of intra‐and extra‐epithelial secretory IgA in chlamydial infections. Immunology, 2014. 143(4): p. 520-530.
    66. Badri, W., et al., Effect of process and formulation parameters on polycaprolactone nanoparticles prepared by solvent displacement. Colloids and surfaces A: physicochemical and engineering aspects, 2017. 516: p. 238-244.
    67. Prokop, A. and J.M. Davidson, Nanovehicular intracellular delivery systems. Journal of pharmaceutical sciences, 2008. 97(9): p. 3518-3590.
    68. Sonaje, K., et al., Enteric-coated capsules filled with freeze-dried chitosan/poly (γ-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials, 2010. 31(12): p. 3384-3394.
    69. Kumeria, T., et al., Enteric polymer-coated porous silicon nanoparticles for site-specific oral delivery of IgA antibody. ACS biomaterials science & engineering, 2020. 8(10): p. 4140-4152.

    無法下載圖示 校內:2029-08-19公開
    校外:2029-08-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE