簡易檢索 / 詳目顯示

研究生: 楊竣徨
Yang, Chun-Huang
論文名稱: 應用VFH演算法於四旋翼機即時避障系統之研究
Application of VFH Algorithm to Real-Time Obstacle Avoidance System of Quadcopter
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 118
中文關鍵詞: 四旋翼無人機VFH演算法路徑規劃光達感測器避障系統
外文關鍵詞: UAV, VFH algorithm, RPLidar, Obstacle Avoidance System, Auto Mode
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技日新月異的進步,使近年來無人機產業蓬勃發展並逐漸應用在生活當中,例如 : 航拍、環境監測、物流運輸或是橋樑檢測等。然而,隨著無人機的應用不斷擴展,相應的飛行環境也變得更加複雜多變,因此無人機的避障系統在執行飛行任務上是未來無人機發展的關鍵技術之一。本研究將以無人機在路徑規劃模式下之避障系統研究為目標。
    本研究結合了光達感測器 ( RPLidar ) 的高精度測距能力和Vector Field Histogram (VFH)的避障演算法,建立一套高效、實時且安全的四旋翼無人機避障系統。當無人機在執行飛行任務的過程中,當障礙物在行進路徑上觸發到避障條件時會啟動避障系統,此時樹莓派會透過 MAVLink 通訊協議的方式與飛行控制器進行連接,並且傳送訊號即時改變無人機的飛行姿態以及飛行模式進行無人機的迴避,最後將此避障系統套用在無人機的路徑規劃模式下,並成功完成實際飛行。
    實驗部分,我們將使用無人機的路徑規劃模式設定起飛原點和降落終點,並在飛行路線上放置在不同的障礙物環境中,評估其避障性能。經過多次測試,無人機在各種複雜環境中均能夠成功避開障礙物並自主完成後續飛行任務,證明了我們系統的有效性和可靠性。

    With the rapid advancement of technology, the drone industry has flourished in recent years, increasingly finding applications in daily life such as aerial photography, environmental monitoring, logistics, and bridge inspection. As drone applications expand, the flying environment becomes more complex and variable, making obstacle avoidance systems a critical aspect of future drone development. This study focuses on the research of obstacle avoidance systems for drones under path auto mode.
    This research combines the high-precision ranging capabilities of RPLidar sensors with the VFH obstacle avoidance algorithm to develop an efficient, real-time, and safe quadcopter obstacle avoidance system. During flight missions, when an obstacle triggers the avoidance system, the Raspberry Pi connects to the flight controller via the MAVLink communication protocol, transmitting signals to instantly change the drone's flight attitude and mode for evasion. The system is then implemented in the drone’s path auto mode, successfully completing actual flights.
    In the experimental part, we set the takeoff origin and landing destination in the drone's path planning mode and placed various obstacles along the flight route to assess its obstacle avoidance performance. After multiple tests, the drone successfully avoided obstacles in various complex environments and autonomously completed subsequent flight tasks, demonstrating the effectiveness and reliability of our system.

    中文摘要 I 致謝 V 目錄 VI 表目錄 X 圖目錄 XI 符號表 XV 變數 XV 向量與合力 XVI 無人機飛行模式 XVI 縮寫 XVI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 避障演算法 2 1.2.2 避障系統應用於無人載具 3 1.2.3 Dronekit應用於多旋翼機 8 1.2.4 文獻回顧總結 9 1.3 研究動機與目的 10 1.4 論文架構 11 第二章 基礎理論與算法理論 13 2.1 避障策略 13 2.1.1 Virtual Force Field (VFF)演算法 13 2.1.2 Vector field histogram (VFH)演算法 17 2.2 RPLidar感測器 25 2.2.1 RPLidar特性 25 2.2.2 雷射雷射三角測距原理 25 2.3 MAVLink 29 2.4 Dronekit函式庫 29 2.5 研究方法與流程 30 第三章 實驗設備介紹 32 3.1 無人機系統(UAV) 32 3.1.1 四旋翼無人機 32 3.1.2 動力系統 32 3.1.3 飛行控制器 34 3.1.4 GPS接收器 35 3.1.5 數據傳輸模組 36 3.1.6 無人機遙控設備 37 3.1.7 無人載具地面站 39 3.2 嵌入式電腦系統(Companion Computer System) 39 3.2.1 Raspberry Pi 39 3.2.2 Ubuntu作業系統 41 3.3 RPLidar A1 41 3.4 無人機即時避障系統架構 43 第四章 避障系統設計 44 4.1 避障系統設計 44 4.1.1 二維直方圖建立 46 4.1.2 第一層與第二層VFH建立 48 4.2 四旋翼機系統架構 51 4.3 旋翼機姿態控制 53 4.4 路徑規劃之避障系統 59 第五章 實驗結果與分析 61 5.1 硬體設備測試 62 5.1.1 RPLidar A1感測器測試 62 5.1.2 Raspberry Pi與飛控系統連接測試 64 5.2 無人機姿態控制測試 66 5.2.1 基本飛行功能測試 67 5.2.2 航點規劃測試 68 5.3 避障系統測試 70 5.3.1 地面測試 70 5.3.2 避障測試 75 5.4 路徑規劃下的避障測試 78 5.4.1 飛行路徑出現障礙物(存在迴避角度) 79 5.4.2 飛行路徑出現障礙物(不存在迴避角度) 83 5.4.3 未成功避障 87 第六章 結論與未來工作 93 6.1 結論 93 6.2 未來工作 94 參考文獻 96

    [1] Drone and FAA Modernization Reform of 2012, Public Law 112-95, sec 331(8).
    [2] Johann Borenstein and Yorem Koren, “Real-Time Obstacle Avoidance for Fast Mobile Robots,” IEEE Transactions on Systems, Man, and Cybernetics, Sept.-Oct. 1989.
    [3] Johann Borenstein and Yorem Koren, “Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation,” Proceedings of the IEEE Conference on Robotics and Automation, Sacramento, California, April 7-12, 1991.
    [4] Johann Borenstein and Yorem Koren, ” The Vector Field Histogram-Fast Obstacle A voidance for Mobile Robots,” IEEE Transactions on Robotics and Automation, Volume: 7, Issue: 3, June 1991.
    [5] Whee Jae Vim and Jin Bae Park, “Analysis of Mobile Robot Navigation using Vector Field Histogram According to the Number of Sectors, the Robot Speed and the Width of the Path,” 14th International Conference on Control, Automation and Systems (ICCAS 2014), Oct. 22-25, 2014.
    [6] Wim N. Pilkes, “Real-Time Obstacle Avoidance for Fast Mobile Robots,” University of Amsterdam Faculty of Science,2022.
    [7] Hasan M. Qays, Dr. Bassim A. Jumaa and Dr. Ayman D. Salman, “Design and Implementation of Autonomous Quadcopter using SITL Simulator,” Iraqi Journal of Computers, Communications, Control and Systems Engineering(IJCCCE), Vol 20, No.1,January 2020.
    [8] J Senthil Kumar, “Implementation of Vector Field Histogram Based Obstacle a Voidance Wheeled Robot,” 2016 Online International Conference on Green Engineering and Technologies (IC-GET), 04 May 2017.
    [9] Ruan Jacobus van Breda, “Vector Field Histogram Star Obstacle Avoidance System for Multicopters,” Stellenbosch University, 1 December 2016.
    [10] Ulrich and J. Borenstein, “VFH/sup */: local Obstacle Avoidance with Look-Ahead Verification,” IEEE International Conference on Robotics and Automation, 24-28 April 2000.
    [11] Howie Choset, “Principles of Robot Motion,” The MIT Press, May 20, 2005.
    [12] Mehmet Karahan and Cosku Kasnakoglu, “Path Planning and Collision Avoidance with Artificial Intelligence for a Quadrotor UAV,” 2021 International Conference Automatics and Informatics (ICAI), 15 December 2021.
    [13] Andrew Moffatt and Eric Platt, “Obstacle Detection and Avoidance System for Small UAVs using a LiDAR,” 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 06 October 2020.
    [14] 陳俊維, 應用決策樹演算法於四旋翼防撞系統設計與驗證,國立成功大學航空太空工程研究所論文, 2017
    [15] 陳家豪, 四旋翼機在路徑規劃模式下之避障系統研究,國立成功大學航空太空工程研究所論文, 2023
    [16] RPLidar A1, https://www.slamtec.com/cn/Support#rplidar-a-series
    [17] 激光三角測距原理, https://www.slamtec.com/cn/News/Detail/190
    [18] RPLidar API , https://rplidar.readthedocs.io/en/latest/
    [19] Mission Planner, https://ardupilot.org/copter/index.html
    [20] DroneKit-Python, https://dronekitpython.readthedocs.io/en/latest/automodule.html
    [21] 樹梅派與Pixhawk連接教學,https://rmotex.blogspot.com/2017/10/raspberry-pi-3-pixhawk-mavlinkmacos.html
    [22] Ubuntu 環境建置,https://adamtheautomator.com/ubuntu-on-raspberry-pi/

    無法下載圖示 校內:2029-07-18公開
    校外:2029-07-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE