| 研究生: |
楊竣徨 Yang, Chun-Huang |
|---|---|
| 論文名稱: |
應用VFH演算法於四旋翼機即時避障系統之研究 Application of VFH Algorithm to Real-Time Obstacle Avoidance System of Quadcopter |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 四旋翼無人機 、VFH演算法 、路徑規劃 、光達感測器 、避障系統 |
| 外文關鍵詞: | UAV, VFH algorithm, RPLidar, Obstacle Avoidance System, Auto Mode |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技日新月異的進步,使近年來無人機產業蓬勃發展並逐漸應用在生活當中,例如 : 航拍、環境監測、物流運輸或是橋樑檢測等。然而,隨著無人機的應用不斷擴展,相應的飛行環境也變得更加複雜多變,因此無人機的避障系統在執行飛行任務上是未來無人機發展的關鍵技術之一。本研究將以無人機在路徑規劃模式下之避障系統研究為目標。
本研究結合了光達感測器 ( RPLidar ) 的高精度測距能力和Vector Field Histogram (VFH)的避障演算法,建立一套高效、實時且安全的四旋翼無人機避障系統。當無人機在執行飛行任務的過程中,當障礙物在行進路徑上觸發到避障條件時會啟動避障系統,此時樹莓派會透過 MAVLink 通訊協議的方式與飛行控制器進行連接,並且傳送訊號即時改變無人機的飛行姿態以及飛行模式進行無人機的迴避,最後將此避障系統套用在無人機的路徑規劃模式下,並成功完成實際飛行。
實驗部分,我們將使用無人機的路徑規劃模式設定起飛原點和降落終點,並在飛行路線上放置在不同的障礙物環境中,評估其避障性能。經過多次測試,無人機在各種複雜環境中均能夠成功避開障礙物並自主完成後續飛行任務,證明了我們系統的有效性和可靠性。
With the rapid advancement of technology, the drone industry has flourished in recent years, increasingly finding applications in daily life such as aerial photography, environmental monitoring, logistics, and bridge inspection. As drone applications expand, the flying environment becomes more complex and variable, making obstacle avoidance systems a critical aspect of future drone development. This study focuses on the research of obstacle avoidance systems for drones under path auto mode.
This research combines the high-precision ranging capabilities of RPLidar sensors with the VFH obstacle avoidance algorithm to develop an efficient, real-time, and safe quadcopter obstacle avoidance system. During flight missions, when an obstacle triggers the avoidance system, the Raspberry Pi connects to the flight controller via the MAVLink communication protocol, transmitting signals to instantly change the drone's flight attitude and mode for evasion. The system is then implemented in the drone’s path auto mode, successfully completing actual flights.
In the experimental part, we set the takeoff origin and landing destination in the drone's path planning mode and placed various obstacles along the flight route to assess its obstacle avoidance performance. After multiple tests, the drone successfully avoided obstacles in various complex environments and autonomously completed subsequent flight tasks, demonstrating the effectiveness and reliability of our system.
[1] Drone and FAA Modernization Reform of 2012, Public Law 112-95, sec 331(8).
[2] Johann Borenstein and Yorem Koren, “Real-Time Obstacle Avoidance for Fast Mobile Robots,” IEEE Transactions on Systems, Man, and Cybernetics, Sept.-Oct. 1989.
[3] Johann Borenstein and Yorem Koren, “Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation,” Proceedings of the IEEE Conference on Robotics and Automation, Sacramento, California, April 7-12, 1991.
[4] Johann Borenstein and Yorem Koren, ” The Vector Field Histogram-Fast Obstacle A voidance for Mobile Robots,” IEEE Transactions on Robotics and Automation, Volume: 7, Issue: 3, June 1991.
[5] Whee Jae Vim and Jin Bae Park, “Analysis of Mobile Robot Navigation using Vector Field Histogram According to the Number of Sectors, the Robot Speed and the Width of the Path,” 14th International Conference on Control, Automation and Systems (ICCAS 2014), Oct. 22-25, 2014.
[6] Wim N. Pilkes, “Real-Time Obstacle Avoidance for Fast Mobile Robots,” University of Amsterdam Faculty of Science,2022.
[7] Hasan M. Qays, Dr. Bassim A. Jumaa and Dr. Ayman D. Salman, “Design and Implementation of Autonomous Quadcopter using SITL Simulator,” Iraqi Journal of Computers, Communications, Control and Systems Engineering(IJCCCE), Vol 20, No.1,January 2020.
[8] J Senthil Kumar, “Implementation of Vector Field Histogram Based Obstacle a Voidance Wheeled Robot,” 2016 Online International Conference on Green Engineering and Technologies (IC-GET), 04 May 2017.
[9] Ruan Jacobus van Breda, “Vector Field Histogram Star Obstacle Avoidance System for Multicopters,” Stellenbosch University, 1 December 2016.
[10] Ulrich and J. Borenstein, “VFH/sup */: local Obstacle Avoidance with Look-Ahead Verification,” IEEE International Conference on Robotics and Automation, 24-28 April 2000.
[11] Howie Choset, “Principles of Robot Motion,” The MIT Press, May 20, 2005.
[12] Mehmet Karahan and Cosku Kasnakoglu, “Path Planning and Collision Avoidance with Artificial Intelligence for a Quadrotor UAV,” 2021 International Conference Automatics and Informatics (ICAI), 15 December 2021.
[13] Andrew Moffatt and Eric Platt, “Obstacle Detection and Avoidance System for Small UAVs using a LiDAR,” 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 06 October 2020.
[14] 陳俊維, 應用決策樹演算法於四旋翼防撞系統設計與驗證,國立成功大學航空太空工程研究所論文, 2017
[15] 陳家豪, 四旋翼機在路徑規劃模式下之避障系統研究,國立成功大學航空太空工程研究所論文, 2023
[16] RPLidar A1, https://www.slamtec.com/cn/Support#rplidar-a-series
[17] 激光三角測距原理, https://www.slamtec.com/cn/News/Detail/190
[18] RPLidar API , https://rplidar.readthedocs.io/en/latest/
[19] Mission Planner, https://ardupilot.org/copter/index.html
[20] DroneKit-Python, https://dronekitpython.readthedocs.io/en/latest/automodule.html
[21] 樹梅派與Pixhawk連接教學,https://rmotex.blogspot.com/2017/10/raspberry-pi-3-pixhawk-mavlinkmacos.html
[22] Ubuntu 環境建置,https://adamtheautomator.com/ubuntu-on-raspberry-pi/
校內:2029-07-18公開