| 研究生: |
張哲維 Chang, Che-wei |
|---|---|
| 論文名稱: |
技術分析與週期循環應用於電信產業 An Application of the Technical Strategy Analysis with Business Cycle in Telecommunication Industry |
| 指導教授: |
張瀞之
Chang, Ching-chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 電信管理研究所 Institute of Telecommunications Management |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 電信產業 、平滑異同平均線 、週期 、技術分析 |
| 外文關鍵詞: | Business cycle, MACD, Telecommunications industry, Technical strategy analysis |
| 相關次數: | 點閱:183 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電信產業一直以來對於國家競爭力之提升以及其他產業之助益都是不可言喻的,並且經過了電信三法之推動,使得電信自由化,也讓一般投資人能在股票市場中以其當成投資標的,但也因為電信市場之開放,使得競爭變得相當激烈,也增加了投資者之風險。因此本研究利用技術分析以及週期這兩種在股票市場及財金市場相當成熟之方法進行投資模型之建立,進而提供投資人更穩健之投資決策。
本研究假設投資者在股票市場中不進行投機行為,並且持有其股票需達六個月以上,在投資過程中會進行增量購買及減量賣出股票之動作。在股票市場中有許多成熟之技術分析工具,如:移動平移法、平滑異同平均線(MACD)、相對強弱指標…等,透過文獻回顧得知平滑異同平均線是較新也是較進階之技術方法,因此本研究採用MACD建立投資模型。因技術分析皆有盲點,因此本研究利用週期分析以修正此缺點,盡量求得投資資訊之更可靠。本研究將技術分析工具與週期比較並提供投資之時點,最後佐以實證並計算報酬率,此研究可提供投資者較可靠之投資資訊決策。
The telecommunications industry has been a propeller for boosting a nation’s competence and benefits other industries. However, the deregulation which admits even more telecom companies in the market disadvantages the service providers owing to the increasingly relentless competitions. Therefore, the risk of investing in the telecom stocks would rise accordingly. Thus, this research creates an investing model accompanied by technical strategy analysis and business cycle derived from stock market and financial market, to provide investors advices on stable trades.
The research assumption holds that speculation regulating is nonexistent and the time period of stock holding must be over six months, yet the volume of stock holding. Numerous technical strategic analysis tools in the stock market have been developed over time, e.g., Moving Average (MA), Moving Average Convergence and Divergence (MACD), Relative Strength Index (RSI). Since MACD is noted as a reliable tool for most of the previous researches, this study adopted the MACD in our investing model. However, the false signals originating in MACD could affect technical analysis erratically; therefore, business cycle is applied as a supplement for more reliable investing information. This study combines the technical analysis tool and business cycle tool for informing investors the appropriate timings for trade decisions. With the proven stable returns, as illustrated in the empirical analysis results, this research is verified to be a great advancement in investors’ decision-making strategy.
Alizadeh, A. H., & Nomikos, N. K. (2007). Investment timing and trading strategies in the sale and purchase market for ships. Transportation Research Part B: Methodological, 41(1), 126-143.
Bessembinder, H., & Chan, K. (1995). The profitability of technical trading rules in the Asian stock markets. Pacific-Basin Finance Journal, 3(2-3), 257-284.
Brock, W., Lakonishok, J., & LeBaron, B. (Writer) (1992). Simple technical trading rules and the stochastic properties of stock returns. Journal of Finance, 47, 1731-1764
Bruce, S. R. J. (1996). Non-Gaussian seasonal adjustment: X-12-ARIMA versus robust structural models. Journal of Forecasting, 15(4), 305-327.
Cogley, T., & Nason, J. M. (1995). Effects of the Hodrick-Prescott filter on trend and difference stationary time series implications for business cycle research. Journal of Economic Dynamics and Control, 19(1-2), 253-278.
Cornelius, L. (2004). Technical analysis applications (1st ed.). New York: McGraw-Hill.
Dagum, E. B., & Morry, M. (1984). Basic issues on the seasonal adjustment of the Canadian consumer price index. Journal of Business & Economic Statistics, 2(3), 250-259.
Ehlgen, J. G. (1998). Distortionary effects of the optimal Hodrick-Prescott filter. Economics Letters, 61(3), 345-349.
George, Y. (2005). Technical analysis for beginners (1st ed.). New York: Pagefree Publishing.
Guay, A., & St.-Amant, P. (2005). Do the Hodrick-Prescott and Baxter-King filters provide a good approximation of business cycles? Annales d'?conomie et de Statistique, 77, 133-155.
Gunasekarage, A., & Power, D. M. (2001). The profitability of moving average trading rules in South Asian stock markets. Emerging Markets Review, 2(1), 17-33.
Hannan, E. J., Terrell, R. D., & Tuckwell, N. E. (1970). The seasonal adjustment of economic time series. International Economic Review, 11(1), 24-52.
Harvey, A. C., & Jaeger, A. (1993). Detrending, stylized facts and the business cycle. Journal of Applied Econometrics, 8(3), 231-247.
Hodrick, R. J., & Prescott, E. C. (1997). Postwar U.S. business cycles: An empirical investigation. Journal of Money, Credit and Banking, 29(1), 1-16.
Hollistein, D. I. a. M. (1999). Application of simple technical trading rules to Swiss stock prices: Is it profitable? Financial Markets and Portfolio Management, 13(1), 9-26.
Hudson, R., Dempsey, M., & Keasey, K. (1996). A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices - 1935 to 1994. Journal of Banking & Finance, 20(6), 1121-1132.
Kavussanos, M. G., & Alizadeh-M, A. H. (2002). Seasonality patterns in tanker spot freight rate markets. Economic Modelling, 19(5), 747-782.
Kirkpatrick, C. D., & Dahlquist, J. R. (2006). Technical Analysis: The Complete Resource for Financial Market Technicians (1st ed.). New Jersey: FT Press.
Miller, D. M., & Williams, D. (2004). Damping seasonal factors: Shrinkage estimators for the X-12-ARIMA program. International Journal of Forecasting, 20(4), 529-549.
Motohiro, Y. (Writer) (2006). A consumption-based explanation of expected stock returns, Journal of Finance, 61, 539-580.
Neely, C., Weller, P., & Dittmar, R. (1997). Is technical analysis in the foreign exchange market profitable? A genetic programming approach. The Journal of Financial and Quantitative Analysis, 32(4), 405-426.
Pedersen, T. M. (2001). The Hodrick-Prescott filter, the Slutzky effect, and the distortionary effect of filters. Journal of Economic Dynamics and Control, 25(8), 1081-1101.
Pring, M. J. (2002). Techincal analysis Explained (4nd ed.). New York: McGraw-Hill.
Ravn, M. O., & Uhlig, H. (2002). On adjusting the Hodrick-Prescott filter for the frequency of observations. The Review of Economics and Statistics, 84(2), 371-376.
Razzak, W. (1997). The Hodrick-Prescott technique: A smoother versus a filter: An application to New Zealand GDP. Economics Letters, 57(2), 163-168.
Terence Tai-Leung, C., & Wing-Kam, N. (Writer) (2008). Technical analysis and the London stock exchange: Testing the MACD and RSI rules using the FT30, Applied Economics Letters, 15, 1111-1114.
Ward, E. (1998). World-Class Telecommunications Service Development. London: Artech House Publishers.
Zarnowitz, V., & Ozyildirim, A. (2006). Time series decomposition and measurement of business cycles, trends and growth cycles. Journal of Monetary Economics, 53(7), 1717-1739.