簡易檢索 / 詳目顯示

研究生: 許尚武
Shiu, Shang-Wu
論文名稱: 月池配置對於船舶耐海性能之影響研究
Study on the Effect of Moonpool Configuration on the Seakeeping Performance of Ships
指導教授: 吳俊賢
Wu , Chun-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 116
中文關鍵詞: 二維截片法月池井型耐海性能
外文關鍵詞: two-dimensional strip method, moonpool-type, seakeeping performance
相關次數: 點閱:18下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 月池(Moon pool)係指垂直貫穿船體開口以便進出下方水域作業的特殊船體設計,對甲板上人員及操作器械提供相對安全的環境保護,月池自20世紀中期問世後,多見於油氣鑽井船、海洋調研船,並可應用至水下探勘、深海救援等用途上;不過,月池內大量水量移動,則水與井壁間沖激行為造成船體、甚至甲板受到拍擊與振動等現象,船舶耐海性恐受到不好影響。鑑於國內少見此類月池船型設計,本文旨於探討月池井船配置對船舶遭遇不同波浪條件下之船體運動反應的影響。
    本研究方法係建構在於頻率領域下輻射及繞射邊界值問題求解上,採用船舶耐海性能分析常用之二維截片法(Two-dimensional strip method),針對艉放船(Stern-Launch type)與月池井船(Moonpool type)在不同航行船速以及遭遇多種頻率規則波下的船身起伏(Heave)、橫搖(Roll)與縱搖(Pitch)運動進行數值模擬,當中係以源點分佈法求解流場速度勢,進而計算船體浸水表面上流體受力,經船體運動方程式求得單位波幅下各成分波的運動反應,並透過成份波疊加原理來模擬船舶航行在不規則短峰波中之運動行為。
    本文中,海況模擬係採用常見之ITTC雙參數波譜模型,所模擬海況等級涵蓋2至8級,透過剛體運動轉換、分析實際作業點動態加速度,故全船運動反應觀察點除船體重心處外,並觀察兩型船深潛救生艇(Deep Submergence Rescue Vehicle,DSRV)投放點以及遙控無人潛水器(Remotely Operated Underwater Vehicles,ROV)的A架底座等位置側向與垂向加速度。
    本研究數值分析結果顯示,雖月池井船與艉放船在重心處起伏及縱搖運動反應沒有明顯差異,不過兩船重心處橫搖反應峰值大小與位置不同;若同時疊合海況波譜與橫搖反應解作觀察,可發現相對於艉放船,月池井船橫搖峰值處離波譜峰值處較遠,代表兩者重疊範圍少,所誘發橫搖運動的波浪能量小,則月池井船遭遇海況時橫搖反應幅度比較緩和、抗浪性佳。另外,在DSRV與ROV等潛水器投放作業點加速度觀察上,雖兩型船在ROV作業點的加速度值月池井船略高於艉放船但差異不明顯,而兩型船在DSRV作業點,月池井船在各海況下的垂向與側向加速度皆低於艉放船;整體而言,月池井船的確展現出較優異平台穩定性,且具備更友善操作環境,適合擔任潛水器支援母船。

    Moonpool in vessels is a feature design, which is the vertical opening through the hull, for convenient access to the water below hull bottom, and aims to safely launch and recover the underwater vehicles. However, in addition to caused slamming and vibration on hull, sloshing due to severe water movements inside moonpool affects ship stability in waves. To understand the moonpool influence on seakeeping performance, the numerical analysis of ship motion is considered to investigate the motion behaviors of vessels with and without moonpool in present study.
    The well-known strip method is utilized to solve the flow velocity potential and hydrodynamic forces on hull. Consequently, the reacting hydrodynamic and restoring forces are substituted into motion equation to have motion Response Amplitude Operator (RAO) at vessel’s center of gravity. Furthermore, the absolute motion responses at specific locations onboard in various sea states, simulated by ITTC wave spectrum, are comprehensively analyzed to investigate the short-crested results of the vessels of Moonpool type(MP)and Sten-launch type(ST), in which underwater vehicles launching is in moonpool zone and aft-zone, respectively.
    The motion RAO comparison for MP and ST vessels reveals that deviation in heave and pitch is small, but apparent for roll motion in beam sea. Furthermore, it is noted that the peak in roll RAO of MP vessel generally gets distant from the peak of wave spectrum, and it is expected that the less roll response of MP vessel when operating in rough sea. In addition, the acceleration at operation point of DSRV on MP vessel is apparently smaller than ST vessel, although induced accelerations at ROV seat point for both vessels are close. Finally, it concludes that moonpool design is advantageous in seakeeping performance and ensures safety for underwater vehicles operation.

    摘要 I Abstract III 致謝 XIII 目錄 XIV 表目錄 XV 圖目錄 XVI 符號說明 XXII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 第二章 線性船體運動理論之數學模型 4 2.1 座標系統 4 2.2 基本假設與邊界條件 5 2.3 運動方程式 7 2.4 不規則短峰波及船體運動均方根(RMS)值 8 第三章 數值方法 9 3.1 二維截片法之應用 9 第四章 結果與討論 13 4.1 兩種船型基本資料 13 4.2 兩種船型二維比較結果 15 4.3 模擬海況耐海性能評估 50 4.3.1兩種船型模擬海況耐海性能比較 52 第五章 結論與未來展望 88 參考文獻 90

    [1] Fukuda, Fukuda, Kazuhiro. "Behavior of water in vertical well with bottom opening of ship, and its effects on ship-motion." Journal of the Society of Naval Architects of Japan : 107-122. (1977)
    [2] Yang, Seung-Ho, and Sun-Hong Kwon. "Experimental study on moonpool resonance of offshore floating structure." International Journal of Naval Architecture and Ocean Engineering : 313-323. (2013)
    [3] Molin, Bernard. "On the piston and sloshing modes in moonpools." Journal of Fluid Mechanics : 27-50. (2001)
    [4] Sajjan, Sharanabasappa C., and S. Surendran. "Model tests on the moored vessel with different moonpool shapes." Ocean systems engineering: 137-147. (2013)
    [5] Vijith, P. P., and Dr R. Panneerselvam Savin Viswanathan. "Moonpool effects on a floating body." Proceedings of the International Conference on Emerging Trends in Engineering and Management. Vol. 5. No. 3. 2014.
    [6] Mun Sung Kim, Jong Jin Park, Young Kyu Ahn, Hong Su Kim, Ho Hwan Chun "Hydrodynamic Characteristics of Deepwater Drillship for North Sea." Journal of Ocean Engineering and Technology : 300-308. (2015)
    [7] Sivabalan, P., and S. Surendran. "Numerical and experimental study on varying cross-section of moonpool for a drill ship." Ships and Offshore Structures : 885-892. (2017)
    [8] Ravinthrakumar, Senthuran, et al. "Coupled vessel and moonpool responses in regular and irregular waves." Applied Ocean Research : 102010(2020).
    [9] Lei, S. U. N., et al. "Numerical calculation and analysis of resonance of drillship in waves." Chinese Journal of Ship Research : 90-105.(2020)
    [10] Liu, Zhen, et al. "Numerical and experimental study on the influence of a moonpool on motion performance and stability of a drillship." Ocean Engineering : 112241. (2022)
    [11] Овчинников, К. Д. "Численное моделирование качки судна с шахтным устройством на встречном волнении." Труды Института системного программирования РАН : 235-248. (2018).
    [12] Ponnappan, Sivabalan, and Surendran Sankunny. "Hydrodynamic study on water column oscillation of varying cross-sectional moonpool and its effect on resistance of a drill ship." Journal of Offshore Mechanics and Arctic Engineering: 031301. (2018)
    [13] 呂海寧. "波浪作用下鑽井船月池內流體水動力性能研究." 艦船科學技術 : 62-69. (2018)
    [14] Ravinthrakumar, Senthuran, Trygve Kristiansen, and Babak Ommani. "On the Hydrodynamic Interaction Between Ship and Free-Surface Motions on Vessels With Moonpools." International Conference on Offshore Mechanics and Arctic Engineering. Vol. 58844. American Society of Mechanical Engineers, 2019.
    [15] Duan, Fei, et al. "An Improved Method for Predicting Roll Damping and Excessive Acceleration for a Ship With Moonpool Based on Computational Fluid Dynamics Method." Journal of Offshore Mechanics and Arctic Engineering: 051401. (2023)
    [16] Korvin-Kroukovsky, Boris V., and Winnifred R. Jacobs. Pitching and heaving motions of a ship in regular waves. No. R659. 1957
    [17] Salvesen, Nils, E. O. Tuck, and Odd Faltinsen. "Ship motions and sea loads." (1970).
    [18] Kim, Cheung Hun, Frank S. Chou, and David Tien. Motions and hydrodynamic loads of a ship advancing in oblique waves. No. 8. 1980.
    [19] Fang, Ming-Chung, Ming-Ling Lee, and Chwang-Kuo Lee. "Time simulation of water shipping for a ship advancing in large longitudinal waves." Journal of ship research 37.02 (1993): 126-137.
    [20] Garbatov, Y., N. Almany, and M. Tekgoz. "Operational behaviour of an offshore multipurpose support vessel in the Eastern Mediterranean Sea." International Journal of Maritime Engineering 161.A3 (2019).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE