簡易檢索 / 詳目顯示

研究生: 李珈誼
Lee, Chia-Yi
論文名稱: 新式砷化鎵pHEMT雙刀雙擲射頻切換開關設計及應用
A Novel GaAs pHEMT Radio Frequency DPDT Switch Design and Application
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 59
中文關鍵詞: 單石微波積體電路雙刀雙擲開關射頻收發機
外文關鍵詞: MMIC, DPDT switch, RF transceiver
相關次數: 點閱:107下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在研製射頻微波電路中,單刀雙擲與雙刀雙擲開關單石晶片。第一章簡單介紹此篇論文的研究背景及基礎理論,第二章為一單刀單擲微波開關,利用低通率波器取代傳統開關使用的四分之一波長傳輸線,藉以縮小晶片面積。第三章介紹一新型的雙刀雙擲開關,利用八分之一波長傳輸線加上二極體來控制訊號的流動,並且在輸出埠及輸入埠加上一個3dB耦合器,增加各端口間的隔離度並且有抑制高頻訊號通過的作用。第四章中提出一個雙刀雙擲開關之延伸應用,與功率放大器和低雜訊放大器結合,可以提高射頻前端收發系統的動態範圍,並且可以依照傳輸距離來選擇傳輸的路徑,做出做有效率的應用。

    The implementation of SPDT and DPDT switch in MMIC application is presented in this thesis. The SPDT switch uses shunt-shunt transistor topology to get lower insertion loss and better isolation. The operation frequency of this work is 14 GHz – 24 GHz, the insertion loss is 3.3 dB, and the isolation of 24 dB. The structure is simple, and the chip size is 1.45mm × 1.67mm. For the DPDT switch, it utilizes diode to implement the circuit due to the smaller parasitic capacitance when frequency goes high. It also add a coupler at both input and output port to enhance port-to-port isolation and restrain the signal at high frequency. This work operates at 38 GHz – 43 GHz, the insertion loss is less than 5 dB, and isolation of 15 dB. The chip area is 1.55 mm×1.15mm. An application of the DPDT is also introduced, it combines the DPDT switch with one power amplifier and one low noise amplifier, thus forms a compact structure of a RF front-end system. It can choose its transceiver type due to the signal traveling distance.

    中文摘要 I Abstract II 誌謝 IV Contents V Figure Captions VII Table Captions XI Chapter 1 Introduction 1 1.1 Background Survey 1 1.1.1 TDD (Time Division Duplexing) 2 1.1.2 Transmission Line Theory 3 1.1.3 Equivalent circuit of HEMT and Diode 6 1.2 Motivation 8 Chapter 2 SPDT Design 11 2.1 Introduction 11 2.2 Circuit Design 12 2.3 Layout and Simulation Results 14 2.4 Measurement Results and Discussion 17 2.4.1 Linearity Measurement Consideration 20 Chapter 3 DPDT Design 22 3.1 Introduction 22 3.2 Circuit Design 23 3.3 Layout and Simulation Results 29 3.4 Measurement Results and Discussion 33 3.4.1 Measurement Consideration 33 3.4.2 50 Ohms Verification 34 3.4.3 Measurement Results 35 Chapter 4 Application of DPDT Switch 40 4.1 Introduction 40 4.2 Circuit Design 40 4.2.1 LNA 44 4.2.2 PA 46 4.3 Simulation Results 46 4.3.1 LNA 46 4.3.2 PA 48 4.3.3 Overall Circuit 50 Chapter 5 Conclusion 57 Reference 58

    [1] N. Mansoor, A. K. M. Islam, M. Zareei, S. Baharun, T. Wakabayashi, and S. Komaki, "Cognitive Radio Ad-Hoc Network Architectures: A Survey," Wirel. Pers. Commun., vol. 81, pp. 1117-1142, 2015.
    [2] B. Razavi and R. Behzad, RF microelectronics vol. 1: Prentice Hall New Jersey, 1998.
    [3] C. W. Byeon and C. S. Park, "Design and Analysis of the Millimeter-Wave SPDT Switch for TDD Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 61, pp. 2858-2864, 2013.
    [4] R. Sorrentino and G. Bianchi, Microwave and RF engineering vol. 1: John Wiley & Sons, 2010.
    [5] A. Majumder, S. Chatterjee, S. Chatterjee, S. S. Chaudhari, and D. R. Poddar, "Optimization of Small-Signal Model of GaN HEMT by Using Evolutionary Algorithms," IEEE Microwave and Wireless Components Letters, vol. 27, pp. 362-364, 2017.
    [6] M. Sharma and S. Tripathi, "Frequency and voltage dependence of admittance characteristics of Al/Al 2 O 3/PVA: n-ZnSe Schottky barrier diodes," Materials Science in Semiconductor Processing, vol. 41, pp. 155-161, 2016.
    [7] B. Y. Ma, K. S. Boutros, J. B. Hacker, and G. Nagy, "High power AlGaN/GaN Ku-band MMIC SPDT switch and design consideration," in Microwave Symposium Digest, 2008 IEEE MTT-S International, 2008, pp. 1473-1476.
    [8] M. K. Cho, I. Song, J. G. Kim, and J. D. Cressler, "An Active Bi-Directional SiGe DPDT Switch With Multi-Octave Bandwidth," IEEE Microwave and Wireless Components Letters, vol. 26, pp. 279-281, 2016.
    [9] J. He and Y. P. Zhang, "Design of SPST/SPDT Switches in 65nm CMOS for 60GHz applications," in Microwave Conference, 2008. APMC 2008. Asia-Pacific, 2008, pp. 1-4.
    [10] J. Janssen, K. P. Hilton, J. O. Maclean, D. J. Wallis, J. Powell, M. Uren, et al., "X-Band GaN SPDT MMIC with over 25 Watt Linear Power Handling," in 2008 European Microwave Integrated Circuit Conference, 2008, pp. 190-193.
    [11] C. Liu, Q. Li, and Y. Z. Xiong, "A compact Ka-band SPDT switch with high isolation," in Integrated Circuits (ISIC), 2014 14th International Symposium on, 2014, pp. 304-307.
    [12] W. Ciccognani, M. D. Dominicis, M. Ferrari, E. Limiti, M. Peroni, and P. Romanini, "High-power monolithic AlGaN/GaN HEMT switch for X-band applications," Electronics Letters, vol. 44, pp. 911-912, 2008.
    [13] S. Masuda, M. Yamada, Y. Kamada, T. Ohki, K. Makiyama, N. Okamoto, et al., "GaN single-chip transceiver frontend MMIC for X-band applications," in 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, pp. 1-3.
    [14] X. Zheng, J. C. Tremblay, S. E. Huettner, K. P. Ip, T. Papale, and K. L. Lange, "Ka-Band High Power GaN SPDT Switch MMIC," in 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2013, pp. 1-5.
    [15] K. Kohama, T. Ohgihara, and Y. Murakami, "High power DPDT antenna switch MMIC for digital cellular systems," in GaAs IC Symposium IEEE Gallium Arsenide Integrated Circuit Symposium 17th Annual Technical Digest 1995, 1995, pp. 75-78.
    [16] Y. Ziqiang, Y. Tao, Y. Yu, and X. Ruimin, "A 2 GHz high isolation DPDT switch MMIC," in 2005 Asia-Pacific Microwave Conference Proceedings, 2005, p. 3 pp.
    [17] L. Chang-Ho, B. Banerjee, and J. Laskar, "Novel T/R switch architectures for MIMO applications," in 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), 2004, pp. 1137-1140 Vol.2.
    [18] C. W. P. Huang, W. Vaillancourt, B. Alasdair, L. Thavone, C. Masse, and M. Doherty, "Novel double pole double throw switchplexer that simplifies dual-band WLAN and MIMO front-end module designs," in 2008 IEEE MTT-S International Microwave Symposium Digest, 2008, pp. 1183-1186.
    [19] D. Palombini, A. Bentini, and D. Rampazzo, "A 6-18 GHz Integrated HPA-DPDT GaN MMIC," in 2016 IEEE MTT-S International Microwave Symposium (IMS), 2016, pp. 1-4.
    [20] X. Trulls, D. Mateo, and A. Bofill, "A High Dynamic-Range RF Programmable-Gain Front End for G.hn RF-Coax in 65-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, pp. 3243-3253, 2012.
    [21] K. Y. Kim, W. Y. Kim, and C. S. Park, "Dual-Mode High-Dynamic Range Class E HBT Power Amplifier for WCDMA EER Transmitter," IEEE Microwave and Wireless Components Letters, vol. 20, pp. 572-574, 2010.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE