簡易檢索 / 詳目顯示

研究生: 郭家豪
Kuo, Gia-Hao
論文名稱: 快速及超大尺度影像放大與嶄新的評估法:基於基準函數的峰值信噪比
A Fast Large-Scale Image Enlargement Method with a Novel Evaluation Approach: Benchmark Function-based PSNR
指導教授: 郭淑美
Guo, Shu-Mei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 61
中文關鍵詞: 品質評估基準函數無參考基準的演算法分析影像放大
外文關鍵詞: Performance evaluation, benchmark function, no-reference algorithm analysis, image enlargement
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文提出客觀的嶄新影像放大評估法,係基於基準函數的峰值訊噪比方法,以基準函數所生成的虛擬圖形作為實驗資料,排除傳統實驗中縮小方法差異之影響,客觀驗證放大影像之品質;同時也提出以離散餘弦轉換達到超大尺度之影像放大,並獲得快速且高品質影像的成果。影像放大法以矩陣相乘實作離散餘弦轉換而加速運算時間,在超大尺度放大時相對快速,同時,解決傳統離散餘弦轉換放大時影像偏移與方塊效應的問題,並藉由處理整張影像考慮全域之細節達到超越其它影像放大法而有更佳品質的放大影像。提出的影像放大法可以藉由調整轉換矩陣的維度大小而簡易地完成指定像素尺寸之放大。最後,實驗結果證實此離散餘弦轉換放大法有效地達到快速且高品質之影像放大。

    An objective novel evaluation approach, implemented by the benchmark function-based peak signal-to-noise ratio (PSNR), for evaluating the performance of image enlargement is proposed in this thesis. Also, a fast large-scale image enlargement method via the improved discrete cosine transform (DCT) is proposed to improve the quality and speed of image zooming. The proposed image enlargement algorithm based on DCT saves computation time by multiplication of the DCT matrix. Comparing to the traditional DCT approach, the improved approach overcomes the image shifting and blocky effects. In comparisons to other interpolation methods, DCT enlargement outperforms them in edge details because it considers the global frequency information of the whole image. The DCT enlargement is easy to implement the arbitrary pixel-size-based zooming of an image by employing the different size of transform matrix. Illustrative examples show the effectiveness of the proposed approach.

    中文摘要...I Abstract...II List of Tables...V List of Figures...VII Chpater 1 Introduction...1 Chpater 2 A Novel Evaluation Approach of Image Enlargement...5 Chpater 3 A Modified DCT Image Enlargement Method...14 3.1 Preliminary...14 3.2 Proposed image enlargement matrix with an arbitrary scaling magnification...19 Chpater 4 Experimental Results...28 Chpater 5 Conclusions...48 References...50 Appendix A: The Real-Parameter Black-Box Optimization Benchmarking 2010...54

    [1] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.: Prentice Hall, New Jersey, 2007.
    [2] Y. C. Wee and H. J. Shin, “A novel fast fractal super resolution technique,” IEEE transactions on Consumer Electronics, vol. 56, pp. 1537-1541, 2010.
    [3] X. Liang and Z. Gan, “Improved non-local iterative back-projection method for image super-resolution,” 2011 Sixth International Conference on Image and Graphics, pp. 176-181, 2011.
    [4] S. M. Guo, C. B. Li, C. W. Chen, Y. C. Liao, and J. S. H. Tsai, “Enlargement and reduction of image/video via discrete cosine transform pair--- part i: Novel 3-d DCT and enlargement,” Journal of Electronic Imaging, vol. 16, pp. 043006-1-19, 2007.
    [5] S. M. Guo, C. Y. Hsu, G. C. Shih, and C. W. Chen, “Fast pixel-size-based large scale enlargement and reduction of image: An adaptive combination of bilinear interpolation and DCT,” Journal of Electronic Imaging, vol. 20, pp. 033005-1 ~ 033005-15, 2011.
    [6] W. Zhang and W. Cham, “Hallucinating face in the DCT domain,” IEEE Transactions on Image Processing, vol. 20, pp. 2769-2779, 2011.
    [7] H. Demirel and G. Anbarjafari, “Discrete wavelet transform-based satellite image resolution enhancement,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, pp. 1997-2004, 2011.
    [8] N. Hansen, S. Finck, R. Ros, and A. Auger, Real-parameter black-box optimization benchmarking 2010: Noiseless functions definitions. Available: http://coco.gforge.inria.fr/doku.php?id=bbob-2010-downloads
    [9] B. D. Choi and H. Yoo, “Design of piecewise weighted linear interpolation based on even-odd decomposition and its application to image resizing,” IEEE Transactions on Consumer Electronics, vol. 55, pp. 2280-2286, 2009.
    [10] X. Zhang and X. Wu, “Image interpolation by adaptive 2-d autoregressive modeling and soft-decision estimation,” IEEE Transactions on Image Processing, vol. 17, pp. 887-896, 2008.
    [11] X. Jia, “A method of image enlargement based on constrained pixels,” 2009 International Congress on Image and Signal Processing, pp. 1-5, 2009.
    [12] J. W. Han, J. H. Kim, S. H. Cheon, J. O. Kim, and S. J. Ko, “A novel image interpolation method using the bilateral filter,” IEEE Transactions on Consumer Electronics, vol. 56, pp. 175-181, 2010.
    [13] J. Sun, Z. Xu, and H. Y. Shum, “Image super-resolution using gradient profile prior,” 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.
    [14] D. H. Lee, “A new edge-based intra-field interpolation method for deinterlacing using locally adaptive-thresholded binary image,” IEEE Transactions on Consumer Electronics, vol. 54, pp. 110-115, 2008.
    [15] H. Kim, Y. Cha, and S. Kim, “Curvature interpolation method for image zooming,” IEEE Transactions on Image Processing, vol. 20, pp. 1895-1903, 2011.
    [16] M. Li and T. Q. Nguyen, “Markov random field model-based edge-directed image interpolation,” IEEE Transactions on Image Processing, vol. 17, pp. 1121-1128, 2008.
    [17] H. Kawano, N. Suetake, B. Cha, and T. Aso, “Sharpness preserving image enlargement by using self-decomposed codebook and mahalanobis distance,” Image and Vision Computing, vol. 27, pp. 684-693, 2009.
    [18] J. H. Lee, J. O. Kim, J. W. Han, K. S. Choi, and S. J. Ko, “Edge-oriented two-step interpolation based on training set,” IEEE Transactions on Consumer Electronics, vol. 56, pp. 1848-1855, 2010.
    [19] X. Li, K. M. Lam, G. Qiu, L. Shen, and S. Wang, “Example-based image super-resolution with class-specific predictors,” Journal of Visual Communication and Image Representation, vol. 20, pp. 312-322, 2009.
    [20] Y. Hu, K. M. Lam, G. Qiu, and T. Shen, “From local pixel structure to global image super-resolution: A new face hallucination framework,” IEEE Transactions on Image Processing, vol. 20, pp. 433-445, 2011.
    [21] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? A new look at signal fidelity measures,” Signal Processing Magazine, IEEE, vol. 26, pp. 98-117, 2009.
    [22] C. C. Chang, Y. C. Chou, Y. H. Yu, and K. J. Shih, “An image zooming technique based on vector quantization approximation,” Image and Vision Computing, vol. 23, pp. 1214-1225, 2005.
    [23] R. Ferzli and L. J. Karam, “A no-reference objective image sharpness metric based on the notion of just noticeable blur (jnb),” IEEE Transactions on Image Processing, vol. 18, pp. 717-728, 2009.
    [24] The JPEG Committee Home Page. Available: http://www.jpeg.org/
    [25] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time Signal Processing, 2nd ed.: Prentice Hall, New Jersey, 1999.
    [26] R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 29, pp. 1153-1160, 1981.
    [27] W. Zheng and Y. Liu, “Research in a fast DCT algorithm based on jpeg,” 2011 International Conference on Consumer Electronics, Communications and Networks, pp. 551-553, 2011.
    [28] J. Xiuhua and Z. Caiming, “A fast idct algorithm for image decompression,” Chinese Journal of Computer, vol. 28, pp. 2079-2088, 2005.
    [29] SIPI Image Database. Available: http://sipi.usc.edu/database/
    [30] Satellite Images and Geospatial Data for GIS & Mapping Applications. Available: http://www.satimagingcorp.com/
    [31] W. K. Carey, D. B. Chuang, and S. S. Hemami, “Regularity-preserving image interpolation,” IEEE Transactions on Image Processing, vol. 8, pp. 1293-1297, 1999.
    [32] C. Liu and X. Luo, “Image enlargement via interpolatory subdivision,” Image Processing, IET, vol. 5, pp. 567-571, 2011.
    [33] K. W. Hung and W. C. Siu, “Real-time interpolation using bilateral filter for image zoom or video up-scaling/transcoding,” 2012 IEEE International Conference on Consumer Electronics, pp. 67-68, 2012.

    下載圖示 校內:2017-09-03公開
    校外:2017-09-03公開
    QR CODE