簡易檢索 / 詳目顯示

研究生: 林盈如
Lin, Ying-Ju
論文名稱: 含冠醚基團之芴衍生物:合成、鑑定與螢光感測特性研究
Fluorene-Based Chemosensor Containing Crown Ether Groups: Synthesis, Characterization, Optical Properties and Application
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 76
中文關鍵詞: 螢光感測器冠醚分子
外文關鍵詞: Fluorescent chemosensor, Crown ether, Fluorene, Stern-Volmer constant
相關次數: 點閱:128下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成含冠醚(monoaza-15-crown-5)以及芴衍生物(fluorene)之螢光感測器(FTC),並探討其對金屬陽離子的辨識能力。當加入鐵離子,吸收光譜及螢光光譜呈現藍位移,可推測為鐵離子與冠醚作用,引發光誘導電荷轉移(PCT)。螢光強度的下降可推測為發光團被激發後能量轉移給鐵離子,引發淬熄效應。在多種離子干擾下,FTC對Fe3+仍具有高度的選擇性。其敏感性相對於文獻也顯著提升,可與高分子螢光感測器相比。(Ksv = 1.59×105 M-1) 由於FTC可溶於常用有機溶劑以及高極性溶劑,例如:氯仿、甲苯、甲醇、丙酮…等,因此可應用於水溶液的偵測,提升了感測器之應用性。而其敏銳的螢光感測能力,加入鐵離子後造成溶液顏色變化,可由肉眼辨識鐵離子的存在。

    To improve the sensitivity and application in aqueous solution of chemosensor towards Fe3+, we synthesized a chemosensor (FTC) based on conjugated fluorene core, which contains three crown ether moieties (monoaza-15-crown-5). The FTC is satisfactorily characterized by 1H NMR, COSY, NOESY, 13C NMR, FT-IR and elemental analysis. The FTC is soluble in common organic solvents such as chloroform and toluene, even in high polar solvents such as methanol and N,N-dimethylformamide (DMF). Therefore, the FTC is applicable in aqueous contaminated solution.
    The electrochemical properties were investigated by cyclic voltammetry (CV), with the HOMO and LUMO levels were estimated to be -5.88 eV and -2.88 eV, respectively.
    Fluorescence spectral variations in the presence of different metal ions and concentrations were used to elucidate the selectivity and sensitivity, respectively. The absorption and fluorescence spectra shift hypsochromically (blue-shift) in the presence of Fe3+, which has been attributed to the photoinduced charge transfer (PCT) process between electron-donor (amino) and electron-acceptor (fluorene core). Also the fluorescence quenching was observed, which is resulted from energy transfer from fluorophore to Fe3+ directly. As the concentration of Fe3+ is increased, the collision between fluorophore and Fe3+ is raised, leading to significant decrease in fluorescence intensity. The sensitivity (Stern-Volmer constant: Ksv) of FTC towards Fe3+ reached 1.59×105 M-1 in THF/H2O (9/1 v/v). The characteristic fluorescence responses of FTC upon the addition of Fe3+ lead to the color changes which is detectable by naked eye.
    The presence of hydrochloric results in absorption blue-shift and fluorescence quenching, attributed to the protonation of nitrogen atom of monoaza-15-crown-5 moiety.
    The FTC exhibits specific recognition to Fe3+ with very high sensitivity. Accordingly, it is a promising chemical sensor for Fe3+.

    Abstract I 摘要 II Table of Contents III List of Scheme V List of Tables V List of Figures V Chapter 1 General Introduction 1 1-1 Background of Chemosensors 1 1-2 Introduction to Fluorene 3 1-3 Introduction to Crown Ether 4 1-4 Photoinduced Electron Transfer, PET 5 1-4-1 Principles 5 1-4-2 Crown-containing PET Sensors 6 1-5 Photoinduced Charge Transfer, PCT 7 1-5-1 Principles 7 1-5-2 Crown-containing PCT Sensors 9 1-6 Research Motivation 11 Chapter 2 Theoretical Background 13 2-1 Theory of Fluorescence 13 2-2 Solvent Effects on Emission Spectra 16 2-3 Fluorescence Quenching 17 2-3-1 Dynamic Quenching 18 2-3-2 Static Quenching 19 2-3-3 Sphere of Action Model 21 2-4 Energy Transfer 22 2-5 Reaction Mechanism 26 Chapter 3 Experimental Section 27 3-1 Instruments of Chemical Synthesis 27 3-2 Measurements 27 3-3 Preparation of Metal Ion Solutions and Titration 30 3-4 Materials 31 3-5 Synthetic Scheme of Chemosensor FTC 32 3-6 Synthesis of Chemosensor FTC 33 Chapter 4 Results and Discussion 37 4-1 Synthesis and Characterization 37 4-1-1 1H NMR of FTC 37 4-1-2 COSY of FTC 38 4-1-3 NOESY of FTC 38 4-1-4 13C NMR of FTC 39 4-1-5 FT-IR of FTC 39 4-1-6 Elemental Analysis 50 4-2 Electrochemical Properties 51 4-3 Optical Properties 53 4-3-1 Optical Properties and Band Gap of FTC 53 4-3-2 Influence of Solvent on Absorption and Fluorescence Spectra 54 4-3-3 Chemosensory Fluorescence Responds to Metal Ions 56 4-3-4 Mechanism of Spectra Change 60 4-3-5 Response Sensitivity towards Fe3+ 62 4-3-6 Selectivity of FTC towards Fe3+ 67 4-3-7 Influence of pH on Absorption and Fluorescence Spectra 68 Chapter 5 Conclusions 71 Reference 72

    1.Quang, D. T.; Kim, J. S. Chem. Rev. 2010, 110, 6280.
    2.Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3.
    3.Orvig, C.; Abrams, M. J. Chem. Rev. 1999, 99, 2201.
    4.Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N.
    Coord. Chem. Rev. 2000, 205, 59.
    5.Lee, J. W.; Jung, H. S.; Kwon, P. S.; Kim, J. W.;
    Bartsch, R. A.; Kim, Y.; Kim, S.-J.; Kim, J. S. Org.
    Lett. 2008, 10, 3801.
    6.Czarnik, A. W., Supramolecular Chemistry, Fluorescence,
    and Sensing. In Fluorescent Chemosensors for Ion and
    Molecule Recognition, American Chemical Society: 1993;
    Vol. 538, pp 1-9.
    7.de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.;
    Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice,
    T. E. Chem. Rev. 1997, 97, 1515.
    8.Butler, O. T.; Cook, J. M.; Harrington, C. F.; Hill, S.
    J.; Rieuwerts, J.; Miles, D. L. J. Anal. At. Spectrom.
    2006, 21, 217.
    9.Valeur, B., Probe design and chemical sensing. In Top.
    Fluoresc. Spectrosc., Lakowicz, J. R., Ed. Plenum: New
    York, 1994; Vol. 4, p 21.
    10.Abbel, R.; Schenning, A. P. H. J.; Meijer, E. W. J.
    Polym. Sci., Part A: Polym. Chem. 2009, 47, 4215.
    11.Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev.
    2004, 104, 2723.
    12.Alexandratos, S. D.; Stine, C. L. React. Funct. Polym.
    2004, 60, 3.
    13.Pedersen, C. J. U.S. Patent 3361778. 1968.
    14.Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495.
    15.Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017.
    16.Fabre, B.; Simonet, J. Coord. Chem. Rev. 1998, 178-180,
    1211.

    17.Greenwood, N. N., Earnshaw, A. , Chemistry of the
    Elements. Pergamon Press Inc.: Tarrytown, 1984; p 105
    –110.
    18.Saalfrank, R. W.; Löw, N.; Kareth, S.; Seitz, V.;
    Hampel, F.; Stalke, D.; Teichert, M. Angew. Chem. Int.
    Ed. 1998, 37, 172.
    19.Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Sacchi,
    D.; Taglietti, A. Analyst 1996, 121, 1763.
    20.Bergonzi, R.; Fabbrizzi, L.; Licchelli, M.; Mangano, C.
    Coord. Chem. Rev. 1998, 170, 31.
    21.http://photochemistryportal.net/home/index.php/2009/08/2
    2/luminescent-pet-sensors/
    22.de Silva, A. P.; de Silva, S. A. J. Chem. Soc., Chem.
    Commun. 1986, 1709.
    23.Akkaya, E. U.; Huston, M. E.; Czarnik, A. W. J. Am.
    Chem. Soc. 1990, 112, 3590.
    24.de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.;
    Nieuwenhuizen, M. Chem. Commun. 1996, 1967.
    25.De Santis, G.; Fabbrizzi, L.; Licchelli, M.; Mangano,
    C.; Sacchi, D.; Sardone, N. Inorg. Chim. Acta 1997, 257,
    69.
    26.Valeur, B., Molecular Luminescence Spectroscopy, Part 3.
    In Schulman, S. G., Ed. Wiley: New York, 1993; p 25.
    27.Rettig, W., Lapouyade, R. , Probe design and chemical
    sensing. In Top. Fluoresc. Spectrosc., Lakowicz, J. R.,
    Ed. Plenum: New York, 1994; Vol. 4, p 109.
    28.Valeur, B., Badaoui, F.,Bardez, E., Bourson, J., Boutin,
    P., Chatelain, A., Devol, I., Larrey, B., Lefe`vre,
    J.P., Soulet, A. , Chemosensors of Ion and Molecule
    Recognition. In Desvergne, J.-P., Czarnik, A.W. , Ed.
    NATO ASI Series, Kluwer: Dordrecht, 1997; p 195.
    29.Loehr, H. G.; Voegtle, F. Acc. Chem. Res. 1985, 18, 65.
    30.Alfimov, M. V., Gromov, S.P. , Applied fluorescence. In
    Chemistry, Biology and Medicine, Rettig, W., Ed.
    Springer: Berlin, 1999.
    31.Bourson, J.; Valeur, B. J. Phys. Chem. 1989, 93, 3871.
    32.Le´tard, J.-F., Lapouyade, R., Rettig, W. . Pure Appl.
    Chem. 1993, 65, 1705.
    33.Ushakov, E. N.; Gromov, S. P.; Fedorova, O. A.; Alfimov,
    M. V. Russ. Chem. Bull. 1997, 46, 463.
    34.Rurack, K., Bricks, J.L., Kachkovski, A., Resch, U. J.
    Fluoresc. 1997, 7, 63S.
    35.Mateeva, N., Enchev, V., Antonv, L., Deligeorgiev, T.,
    Mitewa, M. J. Incl. Phenom. 1995, 93, 323.
    36.Martin, M. M.; Plaza, P.; Dai Hung, N.; Meyer, Y. H.;
    Bourson, J.; Valeur, B. Chem. Phys. Lett. 1993, 202, 425.
    37.Martin, M. M.; Plaza, P.; Meyer, Y. H.; Bégin, L.;
    Bourson, J.; Valeur, B. J. Fluoresc. 1994, 4, 271.
    38.Martin, M. M.; Plaza, P.; Meyer, Y. H.; Badaoui, F.;
    Bourson, J.; Lefèvre, J.-P.; Valeur, B. J. Phys. Chem.
    1996, 100, 6879.
    39.Dumon, P.; Jonusauskas, G.; Dupuy, F.; Pee, P.;
    Rulliere, C.; Letard, J. F.; Lapouyade, R. J. Phys.
    Chem. 1994, 98, 10391.
    40.Mathevet, R.; Jonusauskas, G.; Rulliere, C.; Letard, J.
    -F.; Lapouyade, R. J. Phys. Chem. 1995, 99, 15709.
    41.Druzhinin, S. I., Rusalov, M.V., Uzhinov, B.M., Alfimov,
    M.V., Gromov, S.P., Fedorova, O.A. Proc. Indian Acad.
    Sci. 1995, 107, 721.
    42.Rettig, W. Angew. Chem. Int. Ed. Engl. 1986, 25, 971.
    43.Le´tard, J. F., Delmond, S., Lapouyade, R., Braun, D.,
    Rettig, W. Rec. Trav. Chim. 1995, 114, 517.
    44.Jonker, S. A., Van Dijk, S.I., Goubitz, K., Reiss, C.A.,
    Schuddeboom, W., Verhoeven, J.W. Mol. Cryst. Liq. Cryst.
    1990, 183, 273.
    45.Kollmannsberger, M.; Rurack, K.; Resch-Genger, U.; Daub,
    J. J. Phys. Chem. A 1998, 102, 10211.
    46.Jiménez, D.; MartInez-Máñez, R.; Sancenón, F.; Soto, J.
    Tetrahedron Lett. 2004, 45, 1257.
    47.Yu, J.-M.; Chen, Y. J. Polym. Sci., Part A: Polym. Chem.
    2009, 47, 2985.
    48.Yu, J.-M.; Chen, C.-Y.; Chen, Y. J. Taiwan Inst. Chem.
    Eng. In Press, Corrected Proof.
    49.McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev.
    2000, 100, 2537.
    50.Thomas, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev.
    2007, 107, 1339.
    51.Skoog, D. A., Holler, F. J., Nieman, T. A. , Principles
    of Instrumental Analysis. In 5th ed.; Harcourt Brace &
    Co.: 1998; Vol. chapter 15.
    52.Lakowicz, J. R., Solvent and Evironmental Effects. In
    Principles of Fluorescence Spectroscopy, 3rd ed.;
    springer: 2006; Vol. chapter 6.
    53.Lakowicz, J. R., Quenching of Fluorescence. In
    Principles of Fluorescence Spectroscopy, 3rd ed.;
    springer: 2006; Vol. chapter 8.
    54.Kafafi, Z. H., Organic Electroluminescence. US Naval
    Research Lab: Washington, DC, USA, 2005.
    55.May, V.; Kuhn, O., Charge and Energy Transfer Dynamics
    in Molecular Systems. In 2nd ed.; Wiley-VCH: 2003; Vol.
    chapter 8.
    56.Chen, S.-H. The Synthesis and Optoelectronic Properties
    of Electroluminescent Polymers Consisting of Hole- and
    Electron-Transporting Segments. Doctoral Dissertation,
    National Cheng Kung University, 2006.
    57.http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Fundam
    entals/Dexter_Energy_Transfer.
    58.Closs, G. L.; Johnson, M. D.; Miller, J. R.; Piotrowiak,
    P. J. Am. Chem. Soc. 1989, 111, 3751.
    59.Hadziioannou, G.; van Hutten, P. F., Semiconducting
    Polymers. In Germany, 2000; Vol. chapter 16.
    60.Lawrence, N. J., The Wittig Reactions and Related
    Methods in Preparation of Alkenes: A Practical Approach.
    In Willians, J. M. J., Ed. Oxford University Press: New
    York, 1996.
    61.Gosser, D. K., Cyclic Voltammetry Simulation and
    Analysis of Reaction Mechanism. 1st ed.; VCH: New York,
    1993.
    62.Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys.
    1989, 65, 3610.
    63.Yuan, M.; Li, Y.; Li, J.; Li, C.; Liu, X.; Lv, J.; Xu,
    J.; Liu, H.; Wang, S.; Zhu, D. Org. Lett. 2007, 9, 2313.
    64.Zhu, L.; Yang, C.; Zhong, C.; Xu, L.; Qin, J. Polymer
    2008, 49, 3716.
    65.Xia, W.-S.; Schmehl, R. H.; Li, C.-J. J. Am. Chem. Soc.
    1999, 121, 5599.
    66.Fabbrizzi, L.; Poggi, A. Chem. Soc. Rev. 1995, 24, 197.
    67.Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron
    2005, 61, 8551.
    68.Lakowicz, J. R., Introduction to Fluorescence. In
    Principles of Fluorescence Spectroscopy, 3rd ed.;
    springer: 2006; Vol. chapter 1, p 13.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE