簡易檢索 / 詳目顯示

研究生: 鍾昇峰
Chung, Sheng-Feng
論文名稱: 共軛高分子於有機光電元件應用之研究
The Application of Conjugated Polymers to Organic Optoelectronic Devices
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 150
中文關鍵詞: 蕭基元件共軛高分子有機薄膜電晶體高分子發光二極體
外文關鍵詞: Organic thin film transistor, Schottky diode, Conjugated polymer, Polymer light emitting diode
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將研究分為三大部分,皆針對共軛高分子於光電元件之應用作探討。在此選擇探討有機半導體的蕭基行為、高分子偏極化光二極體以及順向排列有機薄膜電晶體等三大課題。依序以不同專題對共軛有機分子於其中扮演的角色加以比較,分別敘述如下:
    (1)不同摻雜物下之聚苯胺在金屬/半導體蕭基接面效應
    聚苯胺蕭基行為的研究主要是針對摻雜硫酸(SA)與甲基磺酸(MSA)的不同,探討對於製作成蕭基二極體特性的影響。此兩種酸的特點為pH值相似但具有不同大小取代基之摻雜物。蕭基接面的製作是利用聚苯胺以電化學方法製備高分子膜於ITO玻璃上,再與低功函數的鋁箔進行接觸,製作出ITO/PANI (SA or MSA)/Al之蕭基二極體。電流-電位特性及交流阻抗分析來檢測高分子膜與金屬接面半導體參數,利用紫外光/可見光譜、循環伏安掃瞄及電子顯微鏡觀測來定義高分子膜的結構、成長速率、電荷移動動力機制。由於摻雜酸的不同,使得電子狀態、表面結構以及電荷傳輸機制的改變,以致元件接面電性,如勢壘高度、起使電位、Richardson常數及ideality factor有所差異。以電流-電位特性分析與交流組抗分析顯示,摻雜甲基磺酸的元件會有較薄的耗盡層厚度,以致於擁有較低的勢壘高度。
    (2)高效率高分子偏極化光二極體
    利用聚茀高分子(PF)經由配向後可得順向排列之結構,進而可發出藍色偏振光來進行研究。在此引入電洞傳輸配向層之觀念來改進文獻中傳統元件效率不佳亮度太低等缺點,以PVK之共軛高分子材料來當作配向層製備ITO/PEDOT/PVK/PF/Ca/Al之高分子偏極光二極體元件,除可增加電洞傳輸效果外亦可以保護電洞注入層PEDOT免於因摩擦而破壞表面。在此成功的得到效率為0.31 cdA-1非常接近標準元件的數值,並擁有超過1000 cdm-2以上之亮度及25左右之偏振比。以光致螢光及電致螢光光譜分析元件厚度對偏振效果之影響,發現電子電洞在結合區域與高分子鍊段重排區域必須重疊之重要性。在光譜中亦發現經由配向排列後所發出之偏振光具有紅位移,顯示出共軛鍊段增長的結果;以及出現較狹窄之半波寬,代表此元件具有光色較飽和之特性,此為順向排列降低分子排列的亂度,因而抑制部分分子鍊中相互吸引或振動的波峰所導致。
    (3)順向分子排列之有機薄膜電晶體
    在此引入配向層製備具規則性排列五環素(pentacene)當作主動層之有機薄膜電晶體,分別以ITO、金來當作閘極、源極與汲極,利用高分子PVP當作介電材料。探討不同共軛高分子以摩擦配向製備之配向材料(PF, PVK)對有機共軛分子排列性之影響,組裝成ITO/PEDOT/PVP/ (PF或PVK)/pentacene/Au之電晶體結構,以提升其載子遷移率。量測電流-電壓特性曲線求其載子遷移率、臨界電壓、電流開關比、飽和電流等參數並加以比較。以PF修飾後可將配向方向平行於通道電流方向之元件的載子遷移率提升至0.623 cm2V-1s-1,與標準元件相較有3倍的提升。且不同苯環位置(主鍊或側鍊)的共軛高分子鍊段,對於pentacene的排列亦有所影響,導致以PVK為配向層的載子遷移率反而下降。這也代表pentacene的分子排列與配向材料的選擇的確與元件的特性具有相當大的關係。

    The main purpose of this dissertation is to study the application of conjugated polymers to optoelectronic devices. The investigations include three parts: the Schottky behavior of metal/semiconductor, polarized polymer light-emitting diodes, and thin film transistors. Conjugated polymers are utilized in each specific topic to investigate the role of active and modified layers. The brief descriptions of three parts in followings:
    (1)Influence of dopant size on the Schottky behavior of polyaniline
    Shottky diodes were fabricated with polyaniline (PANI) doped with sulphate anion (SA) and methane sulfonate anion (MSA) as Al/PANI (SA)/ITO and Al/PANI (MSA)/ITO devices. Schottky contacts could be established between PANI (SA or MSA) and aluminum foils which avoid tedious vacuum evaporation process in making contact. Thermionic emission model was found to fit with the current density (J)-voltage (V) characteristics of the diode. J-V curve and AC impedance characteristics were monitored for the devices. The values of the junction parameters such as ideality factor, barrier height and rectification ratio were compared. UV-vis spectra, cyclic voltammetric curve and scanning electron microscopy were used to define the polymer structure, growth rate and kinetic charge transport. The results are analyzed in the light of differences in dopability, morphology and mobility of carriers between SA and MSA doped PANI in forming Al/conducting polymer junction which alter the electronic state and influence Schottky properties of the device. PANI doped with MSA has thinner depletion layer that promote the probability of charge transport and results in lower barrier height.

    (2)High luminescence polarized polymer light-emitting diodes
    We have successfully constructed a polarized polymer light-emitting diodes (PLEDs) by employing poly(N-vinylcarbazole) (PVK) as an extra hole-transporting alignment layer that prevents the damage of the hole-injected layer of poly (3,4 ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) by mechanical rubbing. The maximum luminance efficiency 0.31 cdA-1 of blue polarized PLED fabricated with the aligned polufluorene (PF) layer is obtained. The brightness approaches 1000 cdm-2 at a relatively low biased voltage. By using a PVK alignment layer, a dichroic ratio of 25.7 (at a 451 nm emission wavelength) was observed by finding the optimum thickness of PF. Herein, the most important topic is confirmed for the relationship between recombination area for hole and electron and rearrangement region in PVK/PF interface. The conjugated length of polymer chain in rubbed device thus longer than random ones and the energy band gap is reduced. This is lead to the red shift of the electroluminescence emission wavelength. The spectrum of photon emission is narrow, characterized by its full width at half maximum value, for the aligned PF film because the random vibrational motions of atoms inconjugated molecular chain were reduced.

    (3)Pentacene-based thin film transistors with aligned layer of conjugated polymer
    Pentacene-based organic thin-film transistors (OTFTs) with a dielectric layer of polyvinylphenol were fabricated onto the ITO glass substrate. Pentacene film was aligned parallel or perpendicular to the mechanical rubbing direction, which consisted with PF or PVK as alignment materials. Electronic parameters such as carrier mobility, threshold voltage and current on-off ratio are achieved. Improving the field-effect mobility in parallel rubbed device aligned by PF, with the value of 0.623 cm2V-1s-1, was achieved 3-fold by the standard pentacene-based OTFTs due to the highly ordered pentacene. The location of benzene ring for alignment layer in main chain or side chain affects the orientation of pentacene molecules, so the mobility of PVK aligned device is reduced. It indicates that field-effect carrier mobility is greatly depended on the molecular orientation, film roughness, and various conjugated alignment layers.

    中文摘要..............................................i 英文摘要............................................iii 誌謝.................................................vi 目錄................................................vii 圖目錄...............................................xi 表目錄..............................................xvi 符號與縮寫.........................................xvii 第一章、緒論 1-1 共軛高分子.........................................1 1-1-1 共軛高分子之發展................................3 1-1-2 共軛高分子之分類................................4 1-1-3 共軛高分子之導電機制............................5 1-1-4 共軛高分子應用於有機光電元件之歷史沿革..........7 1-1-5 共軛高分子應用於有機光電元件之優勢.............10 1-2 共軛高分子之應用..................................12 1-2-1 蕭基二極體.....................................12 1-2-1-1蕭基勢壘之介紹............................13 1-2-1-2蕭基接觸之定性特性........................14 1-2-1-3蕭基二極體之電流電壓特性..................15 1-2-1-4 蕭基與P/N二極體元件整流效應..............17 1-2-2 有機發光二極體.................................19 1-2-2-1有機電激發光二極體之發展..................21 1-2-2-2 有機半導體發光機制.......................24 1-2-2-3 OLED與PLED之比較.........................25 1-2-2-4 元件結構與製作技術.......................26 1-2-3 有機薄膜電晶體.................................27 1-2-3-1半導體基本能帶體論........................28 1-2-3-2 場效電晶體之構造及特性之比較.............29 1-2-3-3 有機薄膜電晶體元件操作模式...............31 1-3 配向技術與光電應用................................33 1-3-1 配向膜與配向方法之介紹.........................33 1-3-2 偏極化光理論...................................36 1-3-3 有機分子排列行為與載子遷移率之影響.............40 1-3-3 配向技術於有機光電元件之應用...................40 1-4 研究動機與方向....................................41 1-4-1 不同摻雜酸下之蕭基勢壘與電性研究...............41 1-4-2 高效率偏極化發光二極體之研究...................41 1-4-3 提升有機薄膜電晶體載子遷移率之研究.............42 第二章、聚苯胺於不同大小摻雜酸下之蕭基勢壘及電性研究 2-1前言...............................................59 2-2 實驗部分..........................................61 2-2-1 藥品與裝置.....................................61 2-2-2 聚苯胺之電化學聚合與分析.......................62 2-2-3 紫外光/可見光譜................................62 2-2-4 蕭基二極體之製作與電流電壓特性量測.............62 2-2-5 交流阻抗頻譜...................................63 2-3 結果與討論........................................63 2-3-1 聚苯胺於硫酸及甲基磺酸下之電化學分析...........63 2-3-2 蕭基電流電壓特性...............................65 2-3-3 聚苯胺載子傳輸機制.............................70 2-3-4 紫外光/可見光譜分析............................71 2-3-5 交流阻抗頻譜分析...............................72 2-4 結論..............................................73 第三章、高順向排列聚茀分子製備高效率偏極化光高分子發光二極體 3-1前言...............................................86 3-2 實驗部分..........................................88 3-2-1 藥品與製備條件.................................88 3-2-2 玻璃基板之處理.................................89 3-2-3 具規則性配向層製備.............................91 3-2-4 發光元件組裝...................................91 3-2-5 光電特性量測...................................92 3-2-6 光譜(紫外光/可見光、光致螢光、電致螢光)特性量測92 3-2-7 原子力顯微鏡測定...............................92 3-3 結果與討論........................................93 3-3-1 配向層之特性分析...............................93 3-3-2 元件厚度分析...................................94 3-3-3 電流-電壓-亮度特性與效率分析...................95 3-3-4 偏振光譜(紫外光/可見光、光致螢光、電致螢光)分析98 3-3-5 元件偏振比與厚度之比較........................101 3-4 結論.............................................102 第四章、具規則排列五環素分子於有機薄膜電晶體之研究 4-1前言..............................................116 4-2 實驗部分.........................................118 4-2-1 藥品、製備條件與電晶體元件製作................118 4-2-2 玻璃基板之處理................................120 4-2-3 介電層厚度之量測..............................120 4-2-4具規則性配向層製備.............................121 4-2-5 電晶體元件電性量測............................121 4-2-6 紫外光/可見光特性量測與接觸角之測試...........121 4-2-7 原子力顯微鏡測定..............................122 4-3 結果與討論.......................................122 4-3-1 配向層之特性分析..............................122 4-3-2偏振紫外光/可見光光譜分析......................123 4-3-3 電晶體ID-VD及ID-VG之特性分析..................125 4-3-4 電晶體載子遷移率之比較........................127 4-4 結論.............................................128 第五章、總結與展望...................................137 參考文獻.............................................141 著作.................................................148 期刊論文.............................................148 研討會論文...........................................148 自述.................................................150

    1.C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gua and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).
    2.T. P. McAndrew, TRIP., 5, 7 (1997).
    3.H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang and A.J. Heeger, J. Chem. Soc. Chem. Commun., 16, 578 (1977).
    4.S Lefrant, L.S. Lichtman, M. Temkin, D.C. Fichten, D.C. Miller, G.E. Whitwell and J.M. Burlich, Solid State Commun., 29, 191 (1979).
    5.H. Shirakawa, Angew. Chem. Int. Ed., 40, 2574 (2001).
    6.A.G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 (2001).
    7.A. J. Heeger, Angew. Chem. Int. Ed., 40, 2591 (2001).
    8.J. H. Schön, A. Dodabalapur, Z. Bao, Ch. Kloc, G. Schenker and B. Batlogg, Nature, 410, 189 (2001).
    9.R. L. Greene and B. R. Street, L. J. Suter, Phys. Rev. Lett., 34, 577 (1975).
    10.R. N. McDonald and T. W. Campbell, J. Am. Chem. Soc., 82, 4669 (1960).
    11.G. A. Lapitskii, S. M. Makin and A. A. Berlin, Vysokomol. Soldin., 9, 1274 (1967).
    12.W. Haertel, G. Kossmehl, G. Maneeke, W. Wille, D. Woehrle and D. Zerpner, Angew. Makromol. Chem., 29, 307 (1973).
    13.G. Kossmehl and Ber. Bunsenges. Phys. Chem., 83, 417 (1979).
    14.L. W. Shacklette, H. Eckhardt, R. R. Chance and R. H. Banghman, J. Chem. Soc. Chem. Commun., 854 (1980).
    15.P. Pfluger and O. B. Street, J. Chem. Phys., 80, 544 (1984).
    16.A. F. Diaz, J. Chem. Soc. Chem. Commun., 635 (1979).
    17.A. F. Diaz, K. K. Kanazawa, J. I. Castillo, J. A. Logan, "Conductive Polymers", (R. B. Seymour, Ed.,) Plenum Press, New York (1981).
    18.E. M. Genies, G. Bidan and A. F. Diaz, J. Electroanal. Chem., 149, 101 (1983).
    19.R. Jansson, H. Arwin, R. Bjorklund and I. Lundstrom, Thin Solid Films, 125, 205 (1980).
    20.A. F. Diaz, A. Matninez, K. K. Kanazawa and M. Salmon, J. Electroanal. Chem., 130, 181 (1980).
    21.G. Tourillon and F. Garnier, J. Electroanal Chem., 135, 173 (1982).
    22.G. Tourillon and F. Gamier, J. Electroanal. Soc., 130, 2042 (1983).
    23.R. J. Waltman, J. Bargon and A.F. Diaz, J. Phys. Chem., 87, 1459 (1983).
    24.J. J. Ohsawa, K. Kaneto and K. Yoshino, Jap. J. App. Phys., 23, L663 (1984).
    25.G. B. Street, T. C. Clarke, R. H. Geiss, V.Y. Lee, A. Nazzal, P. Pflunger and J. C. Scott, J. Phys. (Paris), C3, 599 (1983).
    26.K. K. Kanazawa, A. F. Diaz, M. T. Krounbi and G.. B. Street, Synth. Met., 4, 119 (1981).
    27.A. F. Diaz and J. A. Logan, J. Electroanal. Chem., 111, 111 (1980).
    28.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
    29.J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.N. Friend, P.L. Burn and A. B. Holmes, Nature, 347, 539 (1990).
    30.D. Braun, A.J. Heeger, Appl. Phys. Lett., 58, 1982, (1991).
    31.A. J. Heeger, D. Braun (UNIAX),WO-B 92/16023, (1992).
    32.C. K. Chiang, S. C. Gau, C. R. Fincher Jr., Y. W. Park, A. G. MacDiarmid and A. J. Heeger, Appl. Phys. Lett., 33, 18 (1978).
    33.G. Shi, B. Yu, G. Xue and S. Jin, C. Li, J. Chem. Soc. Chem. Commun. 2459 (1994).
    34.Y. Renkuan, Y. Hang, Z. Zheng and Z. Youdou, Synth. Met., 41-43, 731 (1991).
    35.S. Miyauchi, Y. Goto, Y. Sorimachi and I. Tsubata, Synth. Met., 41-43, 1057 (1991).
    36.J. Kanicki, J. Mol. Cryst., 105, 203 (1984).
    37.P. M. Grant, T. Tani, W. D. Gill, M. Krounbi and T. C. Clarke, J. Appl. Phys., 52, 869 (1981).
    38.J. Lei, W. Liang, C. S. Brumlik and C. R. Martin, Synth. Met., 47, 351 (1992).
    39.M. Narasimhan, M. Hagler, V. Commarata and M. Thakur, Appl. Phys. Lett., 72, 1063 (1998).
    40.T. Tani, W. D. Gill, P. M. Grant, T. C. Clarke and G. B. Street, Synth. Met., 1, 301 (1979).
    41.H. Tomozawa, D. Brown, S. Phillips, A. J. Heeger and H. Kroemer, Synth. Met., 22, 63 (1987).
    42.G. Horowitz, Adv. Mater., 2, 287 (1990).
    43.Y. Ohmori, H. Takahashi, T. Kawai and K. Yoshino, Jpn. Appl. Phys., 29, L1849 (1990).
    44.A. Assadi, A. Spetz, M. Willander, C. Svenson, I. Lundstrom and O. Inganas, Sens. Actuat. B. 20, 71 (1994).
    45.S. Chen and Y. Fang, Synth. Met., 60, 215 (1993).
    46.S. C. K. Misra, M. K. Ram, S. S. Pandey, B. D. Malhotra and S. Chandra, Appl. Phys. Lett., 61, 1219 (1992).
    47.http://www.bellsystemmemorial.com/index.html
    48.http://www.optics.org/articles/news/10/2/2/1.
    49.J. H. Schon, C. Kloc, B. Batlogg, Org. Electron, 1, 57 (2000).
    50.D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, IEEE Electron Device Lett. 18, 87 (1997).
    51.H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard,B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature 401, 685 (1999).
    52.A. Watanabe, S. Murakami and K. Mori, Macromolecules 22, 4231 (1989).
    53.J. Lei, W. Liang, C. J. Brumilk and C. R. Martin, Synth. Met., 47, 351 (1992).
    54.R. Singh and A. K. Narula, Appl. Phys. Lett., 71, 2845 (1997).
    55.H. Kokado, F. Husokawa and K. Hoshino, Jpn. J. Appl. Phys., 32, 189 (1993).
    56.S. S. Pandey, M. K. Ram, V. K. Srivastava and B. D. Malhotra, J. Appl. Polym. Sci., 65, 2745 (1997).
    57.V. Saxena and K. S. V. Santhanam, Curr. Appl. Phys., 3, 227 (2003).
    58.G. E. Jellison, Jr. and H. H. Burke, J. Appl. Phy. 60(2), 841 (1986).
    59.Semiconductor Physics and Devices, 2nd edition, Donaild A. Neamen.
    60.C. Daboo, M. J. Baird, H. P. Hughes, N. Apsley, M. T. Emeny, Thin Solid Films, 201, 9 (1991).
    61.J. Dresner, RCA Rev., 30, 322 (1969)
    62.念家富,曾章和,〝有機發光二極體材料與顯示器之應用〞,電子期刊, 48, 146 (1999).
    63.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holomes, Nature, 347, 539 (1990).
    64.S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
    65.D. F. Barbe and C. R. Westgate, J. Phys. Chem. Solids. 31, 2679 (1970).
    66.M. L. Petrova, L. D. Rozenshtein, and Fiz. Tverd. Tela (Sov. Phys.-Solid State) 12, 961 (1970).
    67.F. Ebisawa, T. Kurokawa, and S. Nara, J. Appl. Phys. 54, 3255 (1983).
    68.H. Koezuka, A. Tsumura, and T. Ando, Synth. Met. 18, 699, (1987); A. Tsumura, H. Koezuka, and Y. Ando, Synth. Met. 25, 11 (1988).
    69.M. Ahlskog, J. Paloheimo, H. Stubb and A. Assadi, Synth Met. 65, 77 (1994).
    70.C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, Science 283 (1999).
    71.P. Dyreklev, G. Gustafassou, O. Inganas, and H. Stubb, Solid State Commun. 82, 317 (1992).
    72.J. T. Lei, W. B. Liang, C. J. Brumlik and C. R. Martin, Synth. Met., 47, 351 (1992).
    73.N. Basescu, Z. X. Liu, D. Moses, A. J. Heeger, H. Naarman and N. Theophilou, Nature 327, 403 (1987).
    74.M. J. Sailor, F. L. Klavetter, R. H. Grubbs, N. S. Lewis, Nature 346, 155 (1990).
    75.C. H. Yang, J. Electrochem. Soc., 146, 1939 (1999).
    76.E. Punkka and M. F. Rubner, Synth. Met., 42, 1509 (1991).
    77.I. B. Nazarova, V. I. Krinichnyi and M. Goldenberg, Synth. Met., 53, 399 (1993).
    78.H. Koezuka and S. Etoh, J. Appl. Phys., 54, 177 (1982).
    79.J. Tsukamotto and H. Obigashi, Synth. Met., 4, 177 (1982).
    80.S. S. Pandey, S. C. K. Misra, B. D. Malhotra and S. Chandra, J. Appl. Polym. Sci., 44, 911 (1992).
    81.J. Kanicki, in: T. A. Skotheim (Ed.), “Handbook of Conducting Polymers”, Marcel Dekker, New York, 1986, p. 545.
    82.W. Bantikassegn and O. Inganas, J. Phys. D: Appl. Phys. 29, 2971 (1996).
    83.M. Chen, D. Nillson, T. Kugler and M. Berggren, Appl. Phys. Lett., 81, 2011 (2002).
    84.R. Gupta, S. C. K. Misra, B. D. Malhotra, N. N. Beladarkere and S. Chandra, Appl. Phys. Lett., 58, 51 (1991).
    85.S. Folch, A. Gruger, A. Regis and Ph. Colomban, Synth. Met., 81, 221 (1996).
    86.W. Luzny and E. Banka, Macromolecules, 33, 425 (2000).
    87.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, Nature 347, 539 (1990).
    88.G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger, Nature 357, 477 (1992).
    89.A. J. Epstein, F. C. Hsu, N. R. Chiou, and V. N. Prigodin, Current Appl. Phys. 2, 339 (2002).
    90.H. Antoniadis, B. R. Hsieh, M. A. Abkowitz, S. A. Jenekhe and M. Stolka, Synth. Met. 62, 265 (1994).
    91.Y. Shi, J. Liu and Y. Yang, J. Appl. Phys. 87, 4254 (2000).
    92.M. Grell and D. D. C. Bradley, Adv. Mater. 11, 895 (1999).
    93.M. Grell, W. Knoll, D. Lupo, A. Meisel, T. Miteva, D. Neher, H. G. Nothofer, U. Scherf and A. Yasuda, Adv. Mater. 11, 671 (1999).
    94.M. Grell, D. D. C. Bradley, E. P. Woo and M. Inbasekaran, Adv. Mater. 9, 798 (1997).
    95.M. Kléman, L. Liébert and L. Strzelecki, Polymer 24, 295 (1983).
    96.K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Jandke and P. Strohriegl, Appl. Phys. Lett. 76, 2946 (2000).
    97.M. Jandke, P. Strohriegl, J. Gmeiner, W. Brütting and M. Schwoerer, Adv. Mater. 11, 1518 (1999).
    98.T. F. Guo, S. C. Chang, Y. Yang, R. C. Kwong and M. E. Thompson, Organic Electronics 1, 15 (2000).
    99.C. H. Lee, G. W. Kang, J. W. Jeon, W. J. Song and C. Seoul, Thin Solid Films 363, 306 (2000).
    100.S. Gaherith, H. G. Nothoper, U. Scherp and E. J. W. List, Jpn. J. Appl. Phys. 43, L891 (2004).
    101.Y. H. Yao, L. R. Kung and C. S. Hsu, Jpn. J. Appl. Phys. 44, 7648 (2005).
    102.U. Scherf and E. J. W. List, Adv. Mater. 14, 477 (2002).
    103.X. H. Yang, D. Neher, S. Lucht, H. Nothofer, R. Güntner, U. Scherf, R. Hagen and S. Kostromine: Appl. Phys. Lett., 81, 2319 (2002).
    104.T. Miteva, A. Meisel, W. Knoll, H. G. Nothofer, U. Scherf, D. C. Müller, K. Meerholz, A. Yasuda and D. Neher, Adv. Mater. 13, 565 (2001).
    105.J. Grüner, M. Remmers and D. Neher: Adv. Mater. 9, 964 (1997).
    106.Bao, Z. Adv. Mater. 12, 227 (2000).
    107.Katz, H. E., Bao, Z. J. Phys. Chem. B, 104, 671 (2000).
    108.Brown, A. R., Jarrett, C. P., deLeeuw, D. M., Matters, M. Synth. Met., 88, 37 (1997).
    109.Horowitz, G. J. Mater. Chem. 9, 2021 (1999).
    110.Klauk, H., Jackson, T. N. Solid State Technol. 43, 63 (2000).
    111.Katz, H. E., Dodabalapur, A., Bao, Z. In Handbook of Oligo and Polythiophenes; Fichou, D., Ed.; Wiley-VCH: Weinheim (1998).
    112.Lovinger, A. J., Rothberg, L. J. J. Mater. Res. 11, 1581 (1996).
    113.Bao, Z., Lovinger, A. J., Brown, J. J. Am. Chem. Soc. 120, 207 (1998).
    114.M. L. Swiggers, G. Xia, J. D. Slinker, A. A. Gorodetsky, and G. G. Malliaras, R. L. Headrick, Brian T. Weslowski, R. N. Shashidhar, and C. S. Dulcey Appl. Phys. Lett., 79, 1300 (2001).
    115.W. Y. Chou, H. L. Cheng, Adv. Funct. Mater. 14, 811 (2004).
    116.X. Linda Chen, Andrew J. Lovinger, Zhenan Bao, and Joyce Sapjeta, Chem. Mater. 13, 1341 (2001).
    117.Karl R. Amundson, B. Joyce Sapjeta, Andrew J. Lovinger, Zhenan Bao, Thin Solid Films 414, 143 (2002).
    118.Dyreklev, P., Gustafsson, G., Inganas, O., Stubb, H. Synth. Met., 57, 4093 (1993).
    119.Era, M. Tsutsui, T. Saito, S., Appl. Phys. Lett. 67, 2436 (1995).
    120.Grell, M., Knoll, W., Lupo, D., Meisel, A., Miteva, T., Neher, D., Nothofer, H. G., Scherf, U., Yasuda, A. Adv. Mater. 11, 671 (1999).
    121.Cimrova, V., Remmers, M., Neher, D., Wegner, G. Adv. Mater. 8, 146 (1996).
    122.M. Hasegawa, Jpn. J. Appl. Phys. 39, 1272 (2000).

    下載圖示 校內:2007-06-26公開
    校外:2007-06-26公開
    QR CODE