簡易檢索 / 詳目顯示

研究生: 康文豪
Kang, Wun-Hao
論文名稱: 電子通過石墨烯pn接面之負折射性質
Electronic Negative Refraction across pn Junctions in Graphene
指導教授: 劉明豪
Liu, Ming-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 47
中文關鍵詞: 負折射石墨烯pn介面
外文關鍵詞: Negative Refraction, Graphene, pn Junction
相關次數: 點閱:76下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據石墨烯在低能量的能帶性質,在經由電極閘調控費米能使得石墨烯形成pn接面後,載子通過接面使得其從類似電子(電洞)行為轉變成類似電洞(電子)行為,且由於電子與電洞的動量差一個負值,我們可以得出載子經過接面後會形成非典型的負折射路徑。在2015年時,有一篇關於量測石墨烯負折射實驗論文被發表在Nature Physics[1],他們宣稱量測到負折射的訊號。但由於他們的結果不是很明顯,因此本論文一開始根據他們元件的參數與設計,再藉由數值分析的工具,Kwant、Gmsh 和FEniCS 來模擬這樣的設計在理想的情況下會得到什麼結果。此外,本論文更進一步根據他們的設計提出了一個改善結果的方法。最後,由於Veselago lens 的設計無法避免Klein tunneling的貢獻,本論文提出新的設計來去除Klein tunneling的貢獻,可做為量測石墨烯之電子負折射更加直接的設計。

    Due to the gapless low-energy band structure, carriers in graphene transform from electron-like (hole-like) to hole-like (electron-like) after passing through the gate-induced pn junction. Because the momenta of these two kinds of carriers are opposite, the trajectory of carriers shows a negative refraction behavior after passing through the pn junction. In 2015, an experimental work reporting negative refraction in graphene was published in Nature Physics[1]; however, the signal is not clear in their result. This work begins with following their geometric design and parameters to check what results should be in the ideal conditions by numerical tools such as Kwant, Gmsh and FEniCS. A modified geometry showing much improved signals due to negative refraction is then investigated. The last part of this work is devoted to a new design for a direct observation of negative refraction without the contribution from the Klein tunneling, which actually dominates the signal in the previous design based on the Veselago lensing geometry.

    摘要 (i) Abstract (ii) 致謝 (iii) Acknowledgements (iv) Table of Contents (v) List of Figures (vii) List of Symbols (viii) Chapter 1 Introduction (1) 1.1 Negative Refraction (1) 1.2 Motivation (2) 1.3 Brief Introduction to Graphene (3) 1.3.1 Graphene Lattice and its Reciprocal Lattice (3) 1.3.2 Band Structure of 2-Dimensional Flat Graphene (5) 1.3.3 Relation between the Fermi Wave Vector and the Carrier Density near the Dirac Cone (8) 1.4 Transport Theory (9) 1.4.1 A Brief Introduction to Green’s Function (9) 1.4.2 A Brief Introduction to Scattering Matrix (10) 1.4.3 Four-Point Resistance (11) 1.4.4 Scanning Gate Microscopy (13) 1.4.5 Scalable Tight-Binding Model (13) 1.5 Tools for Numerical Simulation (14) 1.5.1 Kwant (14) 1.5.2 FEniCS (16) 1.5.3 Gmsh (17) Chapter 2 Design and Simulation of Veselago Lensing Device (19) 2.1 Geometry for Simulating the Veselago Lensing Device (19) 2.1.1 Buffer between Lead and Scattering Region (19) 2.1.2 Geometry for Simulation (20) 2.2 Real-Space Tight-Binding Model Hamiltonian (21) 2.2.1 Ideal Conditions (21) 2.2.2 Local Energy Band Offset from Gating (21) 2.2.3 Electrostatic Simulation for the Top Gate (22) 2.3 Results of Simulation and Analysis (24) 2.3.1 Conductance Simulation (24) 2.3.2 Four-Point Resistance (26) 2.3.3 Current Density Profiles (27) 2.3.4 Summary of Veselago Lensing Device (28) 2.4 Modified Design for Reduced Boundary Scattering (28) 2.4.1 Geometry of Modified Design (28) 2.4.2 Conductance Map and Four-Point Resistance (29) 2.4.3 Current Density Profiles (30) 2.4.4 Scanning Gate Microscope Simulation (32) 2.4.5 Summary for the Modified Design (32) Chapter 3 New Design: Negative Refraction without Klein Tunneling (33) 3.1 Geometry and Model Function for Carrier Density (33) 3.2 Result of Simulation and Analysis (34) 3.2.1 Conductance Simulation (34) 3.2.2 Four-Point Resistance (37) 3.2.3 Current Density Profiles (37) 3.2.4 Summary (39) Chapter 4 Conclusion and Outlook 40 4.1 Conclusion (40) 4.2 Outlook (40) References (41) Appendix A Catastrophe Phenomenon across pn Junction (42) A.1 Method in Geometric Optics (42) A.2 Method from Hint in Paper (44) A.3 Brief Introduction to Elementary Catastrophe (45)

    [1] G. Lee, G. Park, and H. Lee. Observation of negative refraction of dirac fermions in graphene. Nat. Phys., 11(2):925–929, Sep 2015.
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, 2004.
    [3] P.E. Allain and J.N Fuchs. Klein tunneling in graphene: optics with massless electrons. Eur. Phys. J. B, 83(1):301, Oct 2011.
    [4] Vadim V. Cheianov, Fal’ko Vladimir, and B. L. Altshuler. The focusing of electron flow and a veselago lens in graphene p-n junctions. Science, 315:1252–1255, Mar 2007.
    [5] S. P. Milovanović, D. Moldovan, and F. M. Peeters. Veselago lensing in graphene with a p-n junction: Classical versus quantum effects. Journal of Applied Physics, 118(15):154308, 2015.
    [6] Datta S. Electronic Transport in Mesoscopic Systems. Cambridge University Press, 1995.
    [7] Wikimedia Commons. Van der Pauw method. (https://en.wikipedia.org/wiki/Van_der_Pauw_method).
    [8] M. A. Topinka, B. J. LeRoy, S. E. J. Shaw, E. J. Heller, R. M. Westervelt, K. D. Maranowski, and A. C. Gossard. Imaging coherent electron flow from a quantum point contact. Science, 289(5488):2323–2326, 2000.
    [9] Sagar Bhandari, Gil-Ho Lee, Anna Klales, Kenji Watanabe, Takashi Taniguchi, Eric Heller, Philip Kim, and Robert M. Westervelt. Imaging cyclotron orbits of electrons in graphene. Nano Letters, 16(3):1690–1694, 2016.
    [10] Ming-Hao Liu, Peter Rickhaus, Péter Makk, Endre Tóvári, Romain Maurand, Fedor Tkatschenko, Markus Weiss, Christian Schönenberger, and Klaus Richter. Scalable tight-binding model for graphene. Phys. Rev. Lett., 114:036601, Jan 2015.
    [11] Christoph W Groth, Michael Wimmer, Anton R Akhmerov, and Xavier Waintal. Kwant: a software package for quantum transport. New Journal of Physics, 16(6):063065, jun 2014.
    [12] Document of Kwant. https://kwant-project.org/doc/.
    [13] Clevin Handschin, Péter Makk, Peter Rickhaus, Ming-Hao Liu, K. Watanabe, T. Taniguchi, Klaus Richter, and Christian Schönenberger. Fabry-pérot resonances in a graphene/hbn moiré superlattice. Nano Letters, 17(1):328–333, 2017. PMID: 27960257.
    [14] V. Berry M. Waves and thom’s thoerem. Adv. Phys., 25:1–26, Dec 1975.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE