| 研究生: |
林子薰 Lin, Tzu-Hsun |
|---|---|
| 論文名稱: |
浮動式風機複合式繫纜系統可行性研究及永續性評估 Feasibility Study and Sustainability Assessment of Hybrid Mooring System for FOWT |
| 指導教授: |
楊瑞源
Yang, Ray-Yeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 浮動式風機 、複合式繫纜系統 、合成纖維纜繩 、成本估算 、疲勞分析 、纏繞風險 、海洋空間規劃 |
| 外文關鍵詞: | floating offshore wind turbine, hybrid mooring system, synthetic fiber ropes, fatigue analysis, cost estimation, entanglement risk, marine spatial planning |
| 相關次數: | 點閱:48 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為達成2050年淨零碳排的目標並降低全球對化石燃料的依賴,再生能源的發展勢在必行。近年來,由於綠能技術進步快速,離岸風力發電成為最具競爭力及潛力的綠色能源之一,其中,因應國內當今對浮動式風電的規劃以及往較深水區域開發趨勢,本研究旨在建立浮式風機掛載之複合式繫纜系統關鍵技術。
本研究以半潛式浮動式平台搭載大型化15-MW風機作為模擬對象,並藉由ANSYS AQWA及Orcina OrcaFlex水動力數值分析軟體設計複合式繫纜系統。有別於傳統純鐵鍊之設計,複合式繫纜搭配不同合成纖維材料、及其於繫纜繩中分段配置進行彈性模擬,再加入整機系統以進行穩定性分析。合成纖維性價比高,常用於離岸再生能源裝置深水繫泊中,為檢視其於淺水海域中之效應與適應度,本研究選用風能密度較高之新竹外海及英國巴拉島西岸海域作為目標場址,兩者水深分別為100公尺及200公尺,透過模擬實際風場運作模式,以風機的動態耦合運動及繫纜繩張力呈現研究結果。
本文針對浮動式風機之極限限度狀態(ULS)及疲勞限度狀態(FLS)進行測試,以探討複合式繫纜系統之技術可行性、並加入繫纜繩成本估算,以利進一步的均化能源成本(LCOE)分析,其中,掛載複合式繫纜系統之浮動式風機均於50年回歸週期、極端海況條件(ESS)下通過相關規範。此外,為結合永續發展目標中海洋與海洋資源保育的實踐計畫,本研究亦著重於大型海洋哺乳動物群被繫纜繩纏繞危害的議題,以相對風險的型式在本文中做評估與說明。
綜整本文之研究,除浮台穩定性、複合式繫纜系統可行性及鯨豚纏繞風險評估外,亦考量浮式離岸風場海洋空間規劃改善方案,複合式繫纜系統的應用可大幅減少浮動式風機於海底床佔地範圍,進而實現海域空間優化的前景、亦可降低繫纜繩的設計成本。最後,本研究期望透過引進纏繞風險的量化方式提高現代工程對環境保護的重視,並為國內外離岸風電產業累積更全面且生態友善的經驗。
To achieve net-zero emissions by 2050, renewable energy is one of the innovative solutions to reduce people’s reliance on fossil fuels. Since technical progress in offshore wind has been rapid over the last few years, floating wind is now widely regarded as one of the most competitive approaches, which has a great potential in terms of electricity production.
The objective of this study is to develop a critical technology of hybrid mooring system in floating offshore wind. Synthetic fiber ropes offer considerable economic and operational advantages, which have been proved to be the most preferable candidates to substitute for traditional chains in deepwater offshore renewable energy (ORE) mooring configurations. Research of hybrid mooring which parts of mooring lines are replaced with fiber ropes is carried out in this study. Consequently, this study aims to analyze the different effectiveness of hybrid mooring system by comparison between shallower and deeper water region.
The scope of this study describes examinations of ultimate limit state (ULS) and fatigue limit state (FLS) requirements for technical feasibility, assessment of entanglement risk to marine mammals for biodiversity conservation, and cost estimation for levelized cost of energy (LCOE) in economics. First of all, a semi-submersible platform supporting a 15-MW wind turbine with hybrid mooring system is established, through integration of hydrodynamic numerical software, ANSYS AWQA, and then is imported into Orcina OrcaFlex to simulate coupled dynamic response over a time domain. To prioritize technical feasibility in engineering aspects, this turbine survives under extreme sea states (ESS), 50-year return period, with hybrid moorings in both shallow- and deep-water regions. Moreover, fatigue analysis is included to guarantee survivability under severe metocean conditions.
In addition, floating offshore wind farms require marine spatial planning to manage the utilization of oceans coherently. Recently, developments of wind energy have raised public concern about marine space optimization and their influence on natural environment and biodiversity conservation. It is crucial that FOWT adopts an efficient, safe, and sustainable strategy to exploit offshore wind resources. Therefore, this study assesses risk of marine megafauna entanglement hazard and improvement of ocean space optimization in hybrid moorings besides platform stability evaluation. Meanwhile, costs of hybrid mooring systems are analyzed and compared with pure chain design to highlight benefits of synthetic fiber ropes.
[1] Allen, C., Viscelli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., ... & Barter, G. (2020). Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine (No. NREL/TP-5000-76773). National Renewable Energy Lab.(NREL), Golden, CO (United States).
[2] Aqwa Theory Manual. ANSYS, Inc. Southpointe. Release 2021 R1. January 2021.
[3] Benjamins, S., Harnois, V., Smith, H. C. M., Johanning, L., Greenhill, L., Carter, C., & Wilson, B. (2014). Understanding the potential for marine megafauna entanglement risk from renewable marine energy developments.
[4] Bošnjaković, M., Katinić, M., Santa, R., & Marić, D. (2022). Wind Turbine Technology Trends. Applied Sciences, 12(17), 8653.
[5] Butterfield, S., Musial, W., Jonkman, J., & Sclavounos, P. (2007). Engineering challenges for floating offshore wind turbines (No. NREL/CP-500-38776). National Renewable Energy Lab.(NREL), Golden, CO (United States).
[6] Castillo, F. T. S. (2020). Floating Offshore Wind Turbines: Mooring System Optimization for LCOE Reduction.
[7] Chan, T. M. (1996). Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete & Computational Geometry, 16(4), 361-368.
[8] Davies, P., Reaud, Y., Dussud, L., & Woerther, P. (2011). Mechanical behaviour of HMPE and aramid fibre ropes for deep sea handling operations. Ocean Engineering, 38(17-18), 2208-2214.
[9] de Winter, R., van Stein, B., Dijkman, M., & Bäck, T. (2019). Designing ships using constrained multi-objective efficient global optimization. In Machine Learning, Optimization, and Data Science: 4th International Conference, LOD 2018, Volterra, Italy, September 13-16, 2018, Revised Selected Papers 4 (pp. 191-203). Springer International Publishing.
[10] Design, A. P. I. (2005). analysis of station keeping systems for floating structures: API RP 2SK. Washington DC: API.
[11] DNVGL-OS-E301: Position Mooring (Edition July 2015)
[12] DNVGL-OS-E302: Offshore mooring chain (Edition July 2018)
[13] DNVGL-OS-E303: Offshore fibre ropes (Edition July 2015)
[14] DNVGL-RP-0286: Coupled analysis of floating wind turbines (Edition May 2019)
[15] DNVGL-ST-0119: Floating wind turbine structures (Edition July 2018)
[16] Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G. E., ... & Viselli, A. (2020). IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine (No. NREL/TP-5000-75698). National Renewable Energy Lab.(NREL), Golden, CO (United States).
[17] Garza-Rios, L. O., Bernitsas, M. M., Nishimoto, K., & Matsuura, J. O. P. J. (2000). Dynamics of spread mooring systems with hybrid mooring lines. J. Offshore Mech. Arct. Eng., 122(4), 274-281.
[18] Harnois, V., Smith, H. C., Benjamins, S., & Johanning, L. (2015). Assessment of entanglement risk to marine megafauna due to offshore renewable energy mooring systems. International Journal of Marine Energy, 11, 27-49.
[19] Harris, R. E., Johanning, L., & Wolfram, J. (2004). Mooring systems for wave energy converters: A review of design issues and choices. Marec2004, 180-189.
[20] Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., ... & Walden, H. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A.
[21] Herduin, M., Banfield, S., Weller, S. D., Thies, P. R., & Johanning, L. (2016). Abrasion process between a fibre mooring line and a corroded steel element during the transit and commissioning of a marine renewable energy device. Engineering Failure Analysis, 60, 137-154.
[22] IRENA. Future of Wind Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects. Available online: https://www.irena.org (accessed on 20 July 2022).
[23] Kim, H., Jeon, G. Y., Choung, J., & Yoon, S. W. (2013). Study on mooring system design of floating offshore wind turbine in Jeju Offshore Area. International Journal of Ocean System Engineering, 3(4), 209-217.
[24] Lamarque, C. H., Pernot, S., & Cuer, A. (2000). Damping identification in multi-degree-of-freedom systems via a wavelet-logarithmic decrement—part 1: theory. Journal of Sound and Vibration, 235(3), 361-374.
[25] Lankhorts Ropes, https://www.lankhorstropes.com/
[26] Lee, Y. L., & Tjhung, T. (2011). Rainflow cycle counting techniques. Metal Fatigue Analysis Handbook: Practical Problem-solving Techniques for Computer-aided Engineering, 89.
[27] OrcaFlex Manual. Orcina Ltd. Daltongate Ulverston Cumbria LA12 7AJ, UK
[28] Pham, H. D., Cartraud, P., Schoefs, F., Soulard, T., & Berhault, C. (2019). Dynamic modeling of nylon mooring lines for a floating wind turbine. Applied Ocean Research, 87, 1-8.
[29] Qiao, D., & Ou, J. (2013). Global responses analysis of a semi-submersible platform with different mooring models in South China Sea. Ships and Offshore Structures, 8(5), 441-456.
[30] Reddy, B. V. (2012). Stabilised soil blocks for structural masonry in earth construction. In Modern earth buildings (pp. 324-363). Woodhead Publishing.
[31] Ridge, I. M. L., Banfield, S. J., & Mackay, J. (2010, September). Nylon fibre rope moorings for wave energy converters. In OCEANS 2010 MTS/IEEE SEATTLE (pp. 1-10). IEEE.
[32] Scheu, M., Matha, D., Schwarzkopf, M. A., & Kolios, A. (2018). Human exposure to motion during maintenance on floating offshore wind turbines. Ocean Engineering, 165, 293-306.
[33] Shu, H., Yao, A., Ma, K. T., Ma, W., & Miller, J. (2018, April). API RP 2SK 4th Edition-An Updated Stationkeeping Standard for the Global Offshore Environment. In Offshore Technology Conference. OnePetro.
[34] Spraul, C., Hong, D. P., Arnal, V., & Reynaud, M. (2017, August). Effect of marine growth on floating wind turbines mooring lines responses. In CFM 2017-23ème Congrès Français de Mécanique. AFM, Maison de la Mécanique, 39/41 rue Louis Blanc-92400 Courbevoie.
[35] Vigara, F., Cerdán, L., Durán, R., Muñoz, S., Lynch, M., Doole, S., ... & Guanche, R. (2019). COREWIND D1. 2: Design Basis. tech. rep., ESTEYCO.
[36] Viriyakijja, K., & Chinnarasri, C. (2015). Wave flume measurement using image analysis. Aquatic Procedia, 4, 522-531.
[37] Wang, Y., Chen, H. C., Koop, A., & Vaz, G. (2021). Verification and validation of CFD simulations for semi-submersible floating offshore wind turbine under pitch free-decay motion. Ocean Engineering, 242, 109993.
[38] Weller, S. D., Johanning, L., Davies, P., & Banfield, S. J. (2015). Synthetic mooring ropes for marine renewable energy applications. Renewable energy, 83, 1268-1278.
[39] Winter, R. D., Stein, B. V., Dijkman, M., & Bäck, T. (2018, September). Designing ships using constrained multi-objective efficient global optimization. In International Conference on Machine Learning, Optimization, and Data Science (pp. 191-203). Springer, Cham.
[40] https://web.ntnu.edu.tw/~algo/ConvexHull.html