簡易檢索 / 詳目顯示

研究生: 葉鼎盛
Ye, Ding-Sheng
論文名稱: 離岸風機結構與土壤互制之有限元素自振分析
Finite element frequency analysis of offshore wind turbine structure under soil and structure interaction
指導教授: 胡宣德
Hu, Hsuan-Teh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 184
中文關鍵詞: 離岸風機自振頻率土壤彈簧無限元素
外文關鍵詞: offshore wind turbines, natural frequency, soil spring, Infinite element
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離岸風力發電為目前最具代表性之再生能源之一,其低汙染、低成本、對環境之低衝擊性成為各國積極發展的重要能源。但因離岸風場存在許多環境負載且需考量與歐洲不同之地質條件與受震反應。除對離岸風機結構做基本結構設計以及耐震技術考量,於結構受震時之最大反應亦需有較精確之模擬,避免結構受外在刺激時達共振反應,因此研究中將分析離岸風機結構之自然振動頻率。
    本研究採以ABAQUS有限元素軟體進行樁土互制高度非線性行為分析,模擬離岸風機結構之自然振動頻率。藉由美國石油協會(API)所建議之土壤反力及位移關係轉換為土壤彈簧進行簡易模擬,藉此求得離岸風機結構之自然振動頻率。而為驗證土壤彈簧之可行性,研究中將採以有樁土互制之有限元素模型與土壤彈簧模型對土壤反力以及位移進行分析,最後以風機結構於樁土互制行為下之無限元素混合模型與土壤彈簧模型之自然振動頻率比較,以作為結構設計之用。

    In recent years, nations over the world are actively looking for new alternative energy due to environmental problems caused by traditional energy, renewable energy such as hydraulic power, wind power, and solar thermal power, become one of the most prospected energy, because of its low pollution and low cost. Before adopt the design of the turbine structure in Europe as the prototype, the geological condition and the frequency of the occurrence of the earthquake in Taiwan should be taken into account. The nature frequency of the turbine structure obtained from this study would help build the foundation of the follow-up research considering the environmental load.
    In this study, the Abaqus finite element program is used to calculate the fundamental frequency of offshore wind turbine supporting structure considering the nonlinear behavior of soil. The jacket-type offshore wind turbine was taken as the prototype for the analysis. The comparison was made between the model adopt the soil spring which built upon the empirical equation proposed by API, and the finite element model in which the soil is modeled by infinite element.
    According to the result, comparing the reaction of the pile-soil under the static force, the numerical result showed that the stiffness obtained from the soil spring model proposed by API was higher than the results of the finite element model. On the other hand, the natural frequency obtained from the soil spring model was also higher than that of the finite element model. The difference was attributed to that the initial stiffness which adopted by the soil spring model was a constant, was higher than that of the finite element model.

    摘要 I 誌謝 VI 目錄 VII 圖目錄 IX 表目錄 XVI 第1章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 4 1.3 論文架構 5 第2章 文獻回顧 6 2.1 風機支承基礎 6 2.2 土壤與結構互制行為 9 2.2.1 基礎受側向載重分析 9 2.2.2 樁基礎受軸向載重分析 23 2.2.3 API規範 30 2.2.4 群樁效應 39 第3章 數值模擬分析 44 3.1 分析方法介紹 44 3.2 分析模型 45 3.2.1 有限元素法 47 3.2.2 材料參數 53 3.2.3 材料塑性模型 57 3.2.4 介面行為 62 3.2.5 邊界條件 62 3.2.6 接觸條件 63 3.3 初始大地應力 64 3.4 土壤彈簧法 68 第4章 單一樁基礎受載重作用下之反應分析 70 4.1 分析模型 70 4.2 單樁結構受載重分析架構 73 4.3 單樁結構受靜態載重分析 74 第5章 風機結構受載重作用之數值分析 85 5.1 分析模型 85 5.2 風機結構為固端支承之自振頻率計算 86 5.3 風機結構受靜態載重分析 91 5.4 風機結構受動態載重分析 101 第6章 結論與建議 121 6.1 結論 121 6.2 建議 122 參考文獻 123

    [1] Adami, N. (2013). Development of an ACIP pile-specific load-displacement model.
    [2] Ahn, K. K., & Kim, H. T. (2005). Group Effects in Pile Group under Lateral Loading. Journal of the Korean Geotechnical Society, 21(2), 47-55.
    [3] Carswell, W. (2012). Probabilistic analysis of offshore wind turbine soil-structure interaction (Doctoral dissertation, University of Massachusetts Amherst).
    [4] Chang, B. K. (2003). Simplified procedure for analysis of laterally loaded single piles and pile groups (Doctoral dissertation, University of Hawaii at Manoa).
    [5] Chandrasekaran, S. S., Boominathan, A., & Dodagoudar, G. R. (2013). Dynamic Response of Laterally Loaded Pile Groups in Clay. Journal of Earthquake Engineering, 17(1), 33-53.
    [6] Clough, R. W., & Penzien, J. (1975). Dynamics of structures (No. Monograph).
    [7] Das, B., & Sobhan, K. (2013). Principles of geotechnical engineering. Cengage Learning.
    [8] Dassault Systèmes Corporation, " SIMULIA Abaqus Analysis User’s Manuals, Theory Manuals and Example Problems Manuals", Version 6.14, France, 2014
    [9] Elshafey, A. A., Haddara, M. R., & Marzouk, H. (2009). Dynamic response of offshore jacket structures under random loads. Marine Structures, 22(3), 504-521.
    [10] Finn, W. L. (2004, August). Characterizing pile foundations for evaluation of performance based seismic design of critical lifeline structures. In 13th World Conference on Earthquake Engineering.
    [11] Hajialilue-Bonab, M., Levacher, D., Chazelas, J. L., & Kaynia, A. M. (2014). Experimental study on the dynamic behavior of laterally loaded single pile. Soil Dynamics and Earthquake Engineering, 66, 157-166.
    [12] Hashash, Y. M., & Park, D. (2002). Viscous damping formulation and high frequency motion propagation in non-linear site response analysis. Soil Dynamics and Earthquake Engineering, 22(7), 611-624.
    [13] Huang, J. W. (2011). Development of modified py curves for Winkler Analysis to characterize the lateral load behavior of a single pile embedded in improved soft clay.
    [14] Khari, M., Kassim, K. A., & Adnan, A. (2014). Development of Curves of Laterally Loaded Piles in Cohesionless Soil. The Scientific World Journal,2014.
    [15] Kim, H. J., Mission, J. L. C., & Park, I. S. (2007). Analysis of static axial load capacity of single piles and large diameter shafts using nonlinear load transfer curves. KSCE Journal of Civil Engineering, 11(6), 285-292.
    [16] Matlock, H. (1970). Correlations for design of laterally loaded piles in soft clay.Offshore Technology in Civil Engineering’s Hall of Fame Papers from the Early Years, 77-94.
    [17] Malhotra, S. (2007, January). Design and construction considerations for offshore wind turbine foundations. In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering (pp. 635-647). American Society of Mechanical Engineers.
    [18] Malhotra Sanjeev, (2007,Oct), "Selection, Design and Contruction Guidelines for Offshore Wind Turbine Foundations, " PB Research & Innovation Report.
    [19] Mokwa, R. L. (1999). Investigation of the resistance of pile caps to lateral loading.
    [20] Mosher, R. L., & Dawkins, W. P. (2000). Theoretical manual for pile foundations (No. ERDC/ITL-TR-00-5). ENGINEER RESEARCH AND DEVELOPMENT CENTER VICKSBURG MS INFORMATION TECHNOLOGY LAB.
    [21] Mostafa, Y. E., & El Naggar, M. H. (2004). Response of fixed offshore platforms to wave and current loading including soil–structure interaction. Soil Dynamics and Earthquake Engineering, 24(4), 357-368.
    [22] Naggar, M. H. E., & Bentley, K. J. (2000). Dynamic analysis for laterally loaded piles and dynamic p-y curves. Canadian Geotechnical Journal, 37(6), 1166-1183.
    [23] Nogami, T. (1987). Dynamic Response of Pile Foundations—Experiment, Analysis and Observation. ASCE.
    [24] Passon, P., & Branner, K. (2014). Load calculation methods for offshore wind turbine foundations. Ships and Offshore Structures, 9(4), 433-449.
    [25] Poulos, H. G. (1971a).Behavior of Laterally Loaded Piles:Ⅰ-Single Piles, Journal of the Soil Mechanics and Foundations Division,ASCE, Vol.97, SM5, May, pp.711-731.
    [26] Poulos, H. G. (1971b). Behavior of Laterally Loaded Piles:Ⅱ-Single Piles, Journal of the Soil Mechanics and Foundations Division,ASCE, Vol.97, SM5, May, pp.733-751.
    [27] Reese, L. C., Cox, W. R., & Koop, F. D. (1974). Analysis of laterally loaded piles in sand. Offshore Technology in Civil Engineering Hall of Fame Papers from the Early Years, 95-105.
    [28] Reese, L. C., Cox, W. R., & Koop, F. D. (1975, January). Field testing and analysis of laterally loaded piles om stiff clay. In Offshore Technology Conference. Offshore Technology Conference.
    [29] Reese,L. C.,Wang, S. T., Arrellaga, J. A., Hendrix, J., and Vasquez, L., "Group 7.0 user’s Manual, " ENSOFT,Inc
    [30] RP2A-WSD, A. P. I. (2000). Recommended practice for planning, designing and constructing fixed offshore platforms–working stress design–. In Twenty-.
    [31] Ruesta, P. F., & Townsend, F. C. (1997). Evaluation of laterally loaded pile group at Roosevelt Bridge. Journal of Geotechnical and Geoenvironmental Engineering, 123(12), 1153-1161.
    [32] Ruiz, M. E. (2005). Study of axially loaded post grouted drilled shafts using CPT based load transfer curves (Doctoral dissertation, University of puerto rico mayagüez campus).
    [33] Shi, W., Park, H., Han, J., Na, S., & Kim, C. (2013). A study on the effect of different modeling parameters on the dynamic response of a jacket-type offshore wind turbine in the Korean Southwest Sea. Renewable Energy, 58, 50-59.
    [34] Tak Kim, B., Kim, N. K., Jin Lee, W., & Su Kim, Y. (2004). Experimental load-transfer curves of laterally loaded piles in Nak-Dong River sand. Journal of Geotechnical and Geoenvironmental Engineering, 130(4), 416-425.
    [35] Van Buren, E., & Muskulus, M. (2012). Improving pile foundation models for use in bottom-fixed offshore wind turbine applications. Energy Procedia, 24, 363-370.
    [36] Vorpahl, F., Popko, W., & Kaufer, D. (2011). Description of a basic model of the" UpWind reference jacket" for code comparison in the OC4 project under IEA Wind Annex 30. Fraunhofer Institute for Wind Energy and Energy System Technology IWES.
    [37] Wu, G., & Finn, W. L. (1997). Dynamic elastic analysis of pile foundations using finite element method in the frequency domain. Canadian Geotechnical Journal, 34(1), 34-43.
    [38] Wu, G., & Finn, W. L. (1997). Dynamic elastic analysis of pile foundations using finite element method in the frequency domain. Canadian Geotechnical Journal, 34(1), 34-43.
    [39] 4C Offshore, http://www.4coffshore.com/windfarms/windspeeds.aspx
    [40] 日本道路協會 (1996),「道路橋示方書•同解說」。
    [41] 刘红石. (1999). Rayleigh 阻尼比例系数的确定. 噪声与振动控制, (6), 21-22.
    [42] 朱惠君(2000),「側向荷重樁非線性反應分析」,國立臺灣大學土木工程學系博士論文。
    [43] 內政部建築研究所 (2001),「建築物基礎構造設計規範」,營建雜誌社。
    [44] 薛朝光(2004),「場鑄單/群樁側向荷載非線性行為研究」, 國立海洋大學河海工程研究所博士學位論文。
    [45] 陳正興,邱俊翔 (2006),「側向荷載群樁之p-y曲線修正方法」,中國土木水利工程學刊,第18卷,第3期,第325-335頁。
    [46] 崔宏环, 张立群, & 赵国景. (2006). 深基坑开挖中双排桩支护的的三维有限元模拟. 岩土力学, 27(4), 662-666.
    [47] 邵国鑫, 屠永清, & 沈洪. (2008). 泡沫铝填充钢管构件阻尼性能的试验研究. 煤矿机械, 29(2), 49-52.
    [48] 费康, 张建伟. (2009). ABAQUS在岩土工程中的应用. 中国水利水电出版社。
    [49] 曹金凤-石亦平(2009), ABAQUS有限元分析常见问题解答. 机械工业出版社。
    [50] 王腾, & 王天霖. (2009). 粉土 p-y 曲线的试验研究. 岩土力学, 30(5), 1343-1346.
    [51] 張智鈞(2010),「群樁效應之三維數值反應分析」,國立中央大學土木工程學系碩士論文。
    [52] 戚玉亮, 冯紫良, 余俊, & 刘成. (2010). 泰州大桥北塔群桩基础三维动力非线性抗震计算研究. Chinese Journal of Rock Mechanics and Engineering.
    [53] 吳俊寬(2011),「離岸風機海底基樁設計之研究」,國立臺灣大學工學院工程科學及海洋工程學系碩士學位論文。
    [54] 阳栋, & 王志亮. (2012). 基于无限元和波场分离法的地震响应数值分析. 同济大学学报: 自然科学版, 40(8), 1129-1134.
    [55] 杨大昱, 袁奇, & 吴聪. (2012). 单桩式海上风力机支撑结构强度振动分析. 西安交通大学学报, 46(7), 26-31.
    [56] 代汝林, 李忠芳, & 王姣. (2012). 基于 ABAQUS 的初始地应力平衡方法研究. 重庆工商大学学报: 自然科学版, 29(9), 76-81.
    [57] 汪优, 刘建华, 王星华, & 蔡君君. (2012). 软土地层桥梁群桩基础桩土共同作用性状的非线性有限元分析. 岩土力学, 33(3), 945-951.
    [58] 李雨润, 孙伟民, 张建华, 袁晓铭, & 张中乐. (2014). 地震作用下群桩水平动力响应特性及 PY 曲线试验研究. 地震工程学报, 36(3), 468-475.
    [59] 台灣電力公司(2015),「離岸風力發電第一期計畫可行性研究」。

    無法下載圖示 校內:2020-11-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE