| 研究生: |
官彣徽 Guan, Wen-Hui |
|---|---|
| 論文名稱: |
探討在食道癌中合併化放療抗性和SOX17/NRF2路徑的關聯 Correlation of the SOX17/NRF2 pathway with concurrent chemoradiation therapy resistance in esophageal squamous cell carcinoma |
| 指導教授: |
王憶卿
Wang, Yi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 食道鱗狀細胞癌 、合併化放療抗性 、SOX17 、NRF2轉錄成癮 、轉錄因子 、轉錄調控機制 |
| 外文關鍵詞: | Esophageal squamous cell carcinoma, concurrent chemoradiation therapy resistance, SOX17, NRF2 addition, transcription factor, transcriptional regulation mechanism |
| 相關次數: | 點閱:35 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景: 食道鱗狀細胞癌 (Esophageal squamous cell carcinoma, ESCC) 是國人男性癌症死因的第五位。合併化放療 (Concurrent chemoradiation therapy, CCRT) 是目前臨床上對於食道癌的第一線治療,但常因治療前腫瘤進程已產生抗性而導致治療無效。先前,我們發現食道鱗狀細胞癌細胞的合併化放療抗性與抑癌轉錄因子SOX17的啟動子高度甲基化 (promoter hypermethylation),所導致的SOX17表現低下有高度的關聯。此外,最近我們透過RNA定序分析發現,受NRF2調控的保護細胞的基因在有化放療抗性的病人中高表現。然而,SOX17和NRF2之間的關係以及對於食道鱗狀癌細胞合併化放療抗性如何調節的分子機制仍有待發掘探究。
研究目的: 本研究目的旨在探究在食道鱗狀癌細胞的合併化放療抗性中,SOX17和NRF2的調控機轉,希望藉此建立生物分子指標做為預測食道鱗狀細胞癌患者的合併化放療效性評估。
研究結果: 首先,我們使用轉錄因子結合位預測工具找到NRF2啟動子上含有七個SOX17結合位。接著,啟動子活性 (promoter activity) 分析及染色質免疫沉澱 (chromatin immunoprecipitation; ChIP) 分析結果顯示,在三組有抗性以及無抗性的食道鱗狀細胞癌中,首次揭露SOX17能轉錄調控並抑制NRF2的啟動子活性。我們進一步地確認了,SOX17會抑制NRF2信使核糖核酸和蛋白質,以及NRF2下游基因的表現。在臨床檢體實驗中,我們收集115位食道鱗狀細胞癌病患的內視鏡切片樣本,確認了其中有五個NRF2下游基因,相較於合併化放療效性較好的病患,其在合併化放療效性較差的病患中的表現量顯著上調。此外,藉由免疫組織化學染色法偵測SOX17和NRF2在細胞核中的蛋白表現程度,發現SOX17蛋白表現量低下並且NRF2蛋白表現量高升的情形,明顯在合併化放療效性較差的病患中被觀察到。Kaplan-Meier survival分析中,證實SOX17蛋白表現量低下或是NRF2蛋白表現量高升是具有預測食道鱗狀細胞癌病患的合併化放療治療效性和存活時間的能力。最後,我們在細胞實驗與動物實驗中證實,對於合併化放療有抗性的食道鱗狀細胞癌細胞的增生、移動以及癌幹細胞特性,會因為SOX17過表達而被削弱,相反的,在SOX17和NRF2同時過表達下被激活。
結論: 我們論述了一個新穎的轉錄因子SOX17對NRF2進行負向轉錄調控機制,並且這條路徑失調,不論在細胞、動物或臨床模型中,都將導致食道癌產生合併化放療的抗性。此外,SOX17和NRF2的免疫反應性以及NRF2下游基因表達有潛力作為生物分子指標,預測食道鱗狀細胞癌患者的合併化放療效性評估。
關鍵字:食道鱗狀細胞癌;合併化放療抗性;SOX17;NRF2轉錄成癮;轉錄因子;轉錄調控機制
Background: Esophageal squamous cell carcinoma (ESCC) is the 5th leading cause of cancer death in Taiwanese male. The concurrent chemoradiation therapy (CCRT) is the standard first-line treatment for ESCC patients, but often failed due to acquired resistance. Previously, we found that CCRT resistance of ESCC is associated with low expression of tumor suppressor-like transcription factor SOX17 due to promoter hypermethylation. In addition, our recent RNA-sequencing analyses showed high mRNA level of cytoprotective genes regulated by NRF2 transcription factor in the CCRT resistant patients. However, the underlying mechanism between SOX17 and NRF2 in regulation of CCRT resistance in ESCC needs to be explored.
Purpose: This study aimed to investigate the mechanisms of SOX17-NRF2 axis in CCRT resistance in ESCC, and thereby to identify molecular biomarkers for predicting CCRT responses.
Results: Firstly, we used transcription factor binding prediction tool and found that NRF2 promoter possessed seven SOX17 binding sites. Next, the promoter activity and chromatin immunoprecipitation assays showed that SOX17 was a transcriptional suppressor of NRF2 promoter in three pairs of parental and resistant CCRT cell lines. We further confirmed that SOX17 downregulated the mRNA and protein level of NRF2 and NRF2 downstream genes. Clinically, by recruiting 115 patient samples, we validated that the expressions of five NRF2 downstream genes were markedly up-regulated in CCRT poor-responders as compared to that in good-responders. In addition, nuclear level of SOX17 and NRF2 by immunohistochemical staining showed that SOX17low and NRF2high express pattern was predominantly found in CCRT poor-responders. Kaplan-Meier survival analysis demonstrated that SOX17low or NRF2high predicted CCRT response and survival time of ESCC patients. Finally, proliferation, migration and stemness of CCRT-resistant ESCC cell lines were attenuated by SOX17 overexpression while induced by reconstituted cells co-overexpressing SOX17 and NRF2 both in vitro and in vivo.
Conclusions: We delineate a novel mechanism that SOX17 negatively regulates NRF2 and disruption of SOX17-NRF2 axis leads to the acquire CCRT resistance in cell, animal and clinical models. In addition, the SOX17/NRF2 immunoreactivity and expression of NRF2 downstream genes may act as molecular biomarkers to predict the CCRT response of ESCC patients.
Key words: Esophageal squamous cell carcinoma; concurrent chemoradiation therapy resistance; SOX17; NRF2 addition; transcription factor; transcriptional regulation mechanism.
Anani M, Nobuhisa I, Osawa M, Iwama A, Harada K, Saito K and Taga T (2014) Sox17 as a candidate regulator of myeloid restricted differentiation potential. Dev Growth Differ. 56(6):469-479.
Bi Y, Cui D, Xiong X and Zhao Y (2021) The characteristics and roles of βTrCP 1/2 in carcinogenesis. FEBS J. 288(11):3351-3374.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68(6):394-424.
Brown SL, Sekhar KR, Rachakonda G, Sasi S and Freeman ML (2008) Activating transcription factor 3 is a novel repressor of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2)-regulated stress pathway. Cancer Res. 68(2):364-368.
Cancer Genome Atlas Research N, Analysis Working Group: Asan U, Agency BCC, Brigham, Women's H, Broad I, Brown U, Case Western Reserve U, Dana-Farber Cancer I, Duke U, Greater Poland Cancer C, Harvard Medical S, Institute for Systems B, Leuven KU, Mayo C, Memorial Sloan Kettering Cancer C, National Cancer I, Nationwide Children's H, Stanford U, University of A, University of M, University of North C, University of P, University of R, University of Southern C, University of Texas MDACC, University of W, Van Andel Research I, Vanderbilt U, Washington U, Genome Sequencing Center: Broad I, Washington University in St L, Genome Characterization Centers BCCA, Broad I, Harvard Medical S, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins U, University of North C, University of Southern California Epigenome C, University of Texas MDACC, Van Andel Research I, Genome Data Analysis Centers: Broad I, Brown U, Harvard Medical S, Institute for Systems B, Memorial Sloan Kettering Cancer C, University of California Santa C, University of Texas MDACC, Biospecimen Core Resource: International Genomics C, Research Institute at Nationwide Children's H, Tissue Source Sites: Analytic Biologic S, Asan Medical C, Asterand B, Barretos Cancer H, BioreclamationIvt, Botkin Municipal C, Chonnam National University Medical S, Christiana Care Health S, Cureline, Duke U, Emory U, Erasmus U, Indiana University School of M, Institute of Oncology of M, International Genomics C, Invidumed, Israelitisches Krankenhaus H, Keimyung University School of M, Memorial Sloan Kettering Cancer C, National Cancer Center G, Ontario Tumour B, Peter MacCallum Cancer C, Pusan National University Medical S, Ribeirao Preto Medical S, St. Joseph's H, Medical C, St. Petersburg Academic U, Tayside Tissue B, University of D, University of Kansas Medical C, University of M, University of North Carolina at Chapel H, University of Pittsburgh School of M, University of Texas MDACC, Disease Working Group: Duke U, Memorial Sloan Kettering Cancer C, National Cancer I, University of Texas MDACC, Yonsei University College of M, Data Coordination Center CI and Project Team: National Institutes of H (2017) Integrated genomic characterization of oesophageal carcinoma. Nature. 541(7636):169-175.
Canning P, Sorrell FJ and Bullock AN (2015) Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med. 88(Pt B):101-107.
Chen HS, Hung WH, Ko JL, Hsu PK, Liu CC, Wu SC, Lin CH and Wang BY (2016) Impact of treatment modalities on survival of patients with locoregional esophageal squamous-cell carcinoma in Taiwan. Medicine (Baltimore). 95(10):e3018.
Chen S, Zhou K, Yang L, Ding G and Li H (2017) Racial differences in esophageal squamous cell carcinoma: incidence and molecular features. Biomed Res Int. 2017:1204082.
Chen W, Jiang T, Wang H, Tao S, Lau A, Fang D and Zhang DD (2012) Does NRF2 contribute to p53-mediated control of cell survival and death? Antioxid Redox Signal. 17(12):1670-1675.
Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D and Zhang DD (2009) Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell. 34(6):663-673.
Cheng X, Ku CH and Siow RC (2013) Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic Biol Med. 64:4-11.
Chew LJ, Ming X, McEllin B, Dupree J, Hong E, Catron M, Fauveau M, Nait-Oumesmar B and Gallo V (2019) Sox17 regulates a program of oligodendrocyte progenitor cell expansion and differentiation during development and repair. Cell Rep. 29(10):3173-3186 e3177.
Clements CM, McNally RS, Conti BJ, Mak TW and Ting JP (2006) DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci U S A. 103(41):15091-15096.
Clements D, Cameleyre I and Woodland HR (2003) Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development. Mech Dev. 120(3):337-348.
Cross DA, Alessi DR, Cohen P, Andjelkovich M and Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 378(6559):785-789.
Delgiorno KE, Hall JC, Takeuchi KK, Pan FC, Halbrook CJ, Washington MK, Olive KP, Spence JR, Sipos B, Wright CV, Wells JM and Crawford HC (2014) Identification and manipulation of biliary metaplasia in pancreatic tumors. Gastroenterology. 146(1):233-244 e235.
DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA and Tuveson DA (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 475(7354):106-109.
Dietrich C (2016) Antioxidant functions of the aryl hydrocarbon receptor. Stem Cells Int. 2016:7943495.
Dodson M, Redmann M, Rajasekaran NS, Darley-Usmar V and Zhang J (2015) KEAP1-NRF2 signaling and autophagy in protection against oxidative and reductive proteotoxicity. Biochem J. 469(3):347-355.
Esser C (2016) The aryl hydrocarbon receptor in immunity: tools and potential. Methods Mol Biol. 1371:239-257.
Faraonio R, Vergara P, Di Marzo D, Pierantoni MG, Napolitano M, Russo T and Cimino F (2006) p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J Biol Chem. 281(52):39776-39784.
Fu D, Ren C, Tan H, Wei J, Zhu Y, He C, Shao W and Zhang J (2015) Sox17 promoter methylation in plasma DNA is associated with poor survival and can be used as a prognostic factor in breast cancer. Medicine (Baltimore). 94(11):e637.
Geismann C, Arlt A, Sebens S and Schafer H (2014) Cytoprotection “gone astray”: Nrf2 and its role in cancer. Onco Targets Ther. 7:1497-1518.
Grimm D, Bauer J, Wise P, Kruger M, Simonsen U, Wehland M, Infanger M and Corydon TJ (2020) The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol. 67(Pt 1):122-153.
Guth SI and Wegner M (2008) Having it both ways: Sox protein function between conservation and innovation. Cell Mol Life Sci. 65(19):3000-3018.
Gutierrez-Vazquez C and Quintana FJ (2018) Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 48(1):19-33.
Hall IH, Liou YF, Okano M and Lee KH (1982) Antitumor agents XLVI: in vitro effects of esters of brusatol, bisbrusatol, and related compounds on nucleic acid and protein synthesis of P-388 lymphocytic leukemia cells. J Pharm Sci. 71(3):345-348.
Harris ML, Baxter LL, Loftus SK and Pavan WJ (2010) Sox proteins in melanocyte development and melanoma. Pigment Cell Melanoma Res. 23(4):496-513.
Hayes JD and Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 39(4):199-218.
He F, Ru X and Wen T (2020) NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 21(13).
Hoshino H, Kobayashi A, Yoshida M, Kudo N, Oyake T, Motohashi H, Hayashi N, Yamamoto M and Igarashi K (2000) Oxidative stress abolishes leptomycin B-sensitive nuclear export of transcription repressor Bach2 that counteracts activation of Maf recognition element. J Biol Chem. 275(20):15370-15376.
Hou L, Srivastava Y and Jauch R (2017) Molecular basis for the genome engagement by Sox proteins. Semin Cell Dev Biol. 63:2-12.
Hsieh CH, Hsieh HC, Shih FS, Wang PW, Yang LX, Shieh DB and Wang YC (2021) An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics. 11(14):7072-7091.
Huang FL and Yu SJ (2018) Esophageal cancer: risk factors, genetic association, and treatment. Asian J Surg. 41(3):210-215.
Huang HC, Nguyen T and Pickett CB (2002) Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem. 277(45):42769-42774.
Hudson C, Clements D, Friday RV, Stott D and Woodland HR (1997) Xsox17alpha and -beta mediate endoderm formation in Xenopus. Cell. 91(3):397-405.
Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH and Surani MA (2015) SOX17 is a critical specifier of human primordial germ cell fate. Cell. 160(1-2):253-268.
Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD and Johansen T (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 285(29):22576-22591.
Janjigian YY, Bendell J, Calvo E, Kim JW, Ascierto PA, Sharma P, Ott PA, Peltola K, Jaeger D, Evans J, de Braud F, Chau I, Harbison CT, Dorange C, Tschaika M and Le DT (2018) CheckMate-032 study: efficacy and safety of Nivolumab and Nivolumab plus Ipilimumab in patients with Metastatic esophagogastric cancer. J Clin Oncol. 36(28):2836-2844.
Kalthoff S, Ehmer U, Freiberg N, Manns MP and Strassburg CP (2010) Interaction between oxidative stress sensor Nrf2 and xenobiotic-activated aryl hydrocarbon receptor in the regulation of the human phase II detoxifying UDP-glucuronosyltransferase 1A10. J Biol Chem. 285(9):5993-6002.
Kamachi Y and Kondoh H (2013) Sox proteins: regulators of cell fate specification and differentiation. Development. 140(20):4129-4144.
Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A and Yamamoto M (2001) Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells. 6(10):857-868.
Katsuoka F and Yamamoto M (2016) Small Maf proteins (MafF, MafG, MafK): history, structure and function. Gene. 586(2):197-205.
Kawajiri K and Fujii-Kuriyama Y (2017) The aryl hydrocarbon receptor: a multifunctional chemical sensor for host defense and homeostatic maintenance. Exp Anim. 66(2):75-89.
Kim IK, Kim K, Lee E, Oh DS, Park CS, Park S, Yang JM, Kim JH, Kim HS, Shima DT, Kim JH, Hong SH, Cho YH, Kim YH, Park JB, Koh GY, Ju YS, Lee HK, Lee S and Kim I (2018) Sox7 promotes high-grade glioma by increasing VEGFR2-mediated vascular abnormality. J Exp Med. 215(3):963-983.
Kleinberg L and Forastiere AA (2007) Chemoradiation in the management of esophageal cancer. J Clin Oncol. 25(26):4110-4117.
Ko JH, Olona A, Papathanassiu AE, Buang N, Park KS, Costa ASH, Mauro C, Frezza C and Behmoaras J (2020) BCAT1 affects mitochondrial metabolism independently of leucine transamination in activated human macrophages. J Cell Sci. 133(22).
Koensgen D, Mustea A, Klaman I, Sun P, Zafrakas M, Lichtenegger W, Denkert C, Dahl E and Sehouli J (2007) Expression analysis and RNA localization of PAI-RBP1 (SERBP1) in epithelial ovarian cancer: association with tumor progression. Gynecol Oncol. 107(2):266-273.
Kohle C and Bock KW (2007) Coordinate regulation of phase I and II xenobiotic metabolisms by the Ah receptor and NRF2. Biochem Pharmacol. 73(12):1853-1862.
Koppula P, Zhang Y, Zhuang L and Gan B (2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond). 38(1):12.
Kuo IY, Huang YL, Lin CY, Lin CH, Chang WL, Lai WW and Wang YC (2019) SOX17 overexpression sensitizes chemoradiation response in esophageal cancer by transcriptional down-regulation of DNA repair and damage response genes. J Biomed Sci. 26(1):20.
Kuo IY, Wu CC, Chang JM, Huang YL, Lin CH, Yan JJ, Sheu BS, Lu PJ, Chang WL, Lai WW and Wang YC (2014) Low SOX17 expression is a prognostic factor and drives transcriptional dysregulation and esophageal cancer progression. Int J Cancer. 135(3):563-573.
Kwak MK, Itoh K, Yamamoto M and Kensler TW (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol. 22(9):2883-2892.
Lagergren J, Smyth E, Cunningham D and Lagergren P (2017) Oesophageal cancer. Lancet. 390(10110):2383-2396.
Lee OH, Jain AK, Papusha V and Jaiswal AK (2007) An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance. J Biol Chem. 282(50):36412-36420.
Lee SH, Lee S, Yang H, Song S, Kim K, Saunders TL, Yoon JK, Koh GY and Kim I (2014) Notch pathway targets proangiogenic regulator Sox17 to restrict angiogenesis. Circ Res. 115(2):215-226.
Li L, Yang WT, Zheng PS and Liu XF (2018) SOX17 restrains proliferation and tumor formation by down-regulating activity of the Wnt/β-catenin signaling pathway via trans-suppressing β-catenin in cervical cancer. Cell Death Dis. 9(7):741.
Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, Pass HI, Bhutkar AJ, Tsirigos A, Ueberheide B, Sayin VI, Papagiannakopoulos T and Pagano M (2019) Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell. 178(2):316-329 e318.
Ling Y, Huang G, Fan L, Wei L, Zhu J, Liu Y, Zhu C and Zhang C (2011) CpG island methylator phenotype of cell-cycle regulators associated with tnm stage and poor prognosis in patients with oesophageal squamous cell carcinoma. J Clin Pathol. 64(3):246-251.
Loboda A, Damulewicz M, Pyza E, Jozkowicz A and Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 73(17):3221-3247.
Lordick F, Mariette C, Haustermans K, Obermannova R, Arnold D and Committee EG (2016) Oesophageal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 27(suppl 5):v50-v57.
Lu M, Wang X, Shen L, Jia J, Gong J, Li J, Li J, Li Y, Zhang X, Lu Z, Zhou J and Zhang X (2016) Nimotuzumab plus paclitaxel and cisplatin as the first line treatment for advanced esophageal squamous cell cancer: a single centre prospective phase II trial. Cancer Sci. 107(4):486-490.
Ma Q (2013) Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53:401-426.
Ma S, Paiboonrungruan C, Yan T, Williams KP, Major MB and Chen XL (2018) Targeted therapy of esophageal squamous cell carcinoma: the NRF2 signaling pathway as target. Ann N Y Acad Sci. 1434(1):164-172.
Maesawa C, Tamura G, Nishizuka S, Ogasawara S, Ishida K, Terashima M, Sakata K, Sato N, Saito K and Satodate R (1996) Inactivation of the CDKN2 gene by homozygous deletion and de novo methylation is associated with advanced stage esophageal squamous cell carcinoma. Cancer Res. 56(17):3875-3878.
Majchrzak-Celinska A, Slocinska M, Barciszewska AM, Nowak S and Baer-Dubowska W (2016) Wnt pathway antagonists, SFRP1, SFRP2, SOX17, and PPP2R2B, are methylated in gliomas and SFRP1 methylation predicts shorter survival. J Appl Genet. 57(2):189-197.
Martin-Richard M, Diaz Beveridge R, Arrazubi V, Alsina M, Galan Guzman M, Custodio AB, Gomez C, Munoz FL, Pazo R and Rivera F (2016) SEOM clinical guideline for the diagnosis and treatment of esophageal cancer (2016). Clin Transl Oncol. 18(12):1179-1186.
McMahon M, Thomas N, Itoh K, Yamamoto M and Hayes JD (2004) Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J Biol Chem. 279(30):31556-31567.
Miao W, Hu L, Scrivens PJ and Batist G (2005) Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J Biol Chem. 280(21):20340-20348.
Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M and Motohashi H (2012) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 22(1):66-79.
Namani A, Li Y, Wang XJ and Tang X (2014) Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer. Biochim Biophys Acta. 1843(9):1875-1885.
Pajares M, Cuadrado A and Rojo AI (2017) Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases. Redox Biol. 11:543-553.
Panagopoulou M, Karaglani M, Balgkouranidou I, Biziota E, Koukaki T, Karamitrousis E, Nena E, Tsamardinos I, Kolios G, Lianidou E, Kakolyris S and Chatzaki E (2019) Circulating cell-free DNA in breast cancer: size profiling, levels, and methylation patterns lead to prognostic and predictive classifiers. Oncogene. 38(18):3387-3401.
Penning TM (2017) Aldo-Keto reductase regulation by the Nrf2 system: implications for stress response, chemotherapy drug resistance, and carcinogenesis. Chem Res Toxicol. 30(1):162-176.
Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD and Cuadrado A (2011) SCF/(Anani et al.)-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol. 31(6):1121-1133.
Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA and Zhang DD (2011) Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci U S A. 108(4):1433-1438.
Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM and MacEwan DJ (2012) The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance. Blood. 120(26):5188-5198.
Saba R, Kitajima K, Rainbow L, Engert S, Uemura M, Ishida H, Kokkinopoulos I, Shintani Y, Miyagawa S, Kanai Y, Kanai-Azuma M, Koopman P, Meno C, Kenny J, Lickert H, Saga Y, Suzuki K, Sawa Y and Yashiro K (2019) Endocardium differentiation through Sox17 expression in endocardium precursor cells regulates heart development in mice. Sci Rep. 9(1):11953.
Sarkar A and Hochedlinger K (2013) The Sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 12(1):15-30.
Sasaki Y, Tamura M, Koyama R, Nakagaki T, Adachi Y and Tokino T (2016) Genomic characterization of esophageal squamous cell carcinoma: insights from next-generation sequencing. World J Gastroenterol. 22(7):2284-2293.
Shah MA, Kojima T, Hochhauser D, Enzinger P, Raimbourg J, Hollebecque A, Lordick F, Kim SB, Tajika M, Kim HT, Lockhart AC, Arkenau HT, El-Hajbi F, Gupta M, Pfeiffer P, Liu Q, Lunceford J, Kang SP, Bhagia P and Kato K (2019) Efficacy and safety of Pembrolizumab for heavily pretreated patients with advanced, metastatic adenocarcinoma or squamous cell carcinoma of the esophagus: the phase 2 KEYNOTE-180 study. JAMA Oncol. 5(4):546-550.
Shibata T, Kokubu A, Saito S, Narisawa-Saito M, Sasaki H, Aoyagi K, Yoshimatsu Y, Tachimori Y, Kushima R, Kiyono T and Yamamoto M (2011) NRF2 mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer. Neoplasia. 13(9):864-873.
Singh A, Venkannagari S, Oh KH, Zhang YQ, Rohde JM, Liu L, Nimmagadda S, Sudini K, Brimacombe KR, Gajghate S, Ma J, Wang A, Xu X, Shahane SA, Xia M, Woo J, Mensah GA, Wang Z, Ferrer M, Gabrielson E, Li Z, Rastinejad F, Shen M, Boxer MB and Biswal S (2016) Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem Biol. 11(11):3214-3225.
Sinner D, Rankin S, Lee M and Zorn AM (2004) Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development. 131(13):3069-3080.
Song Y, Li L, Ou Y, Gao Z, Li E, Li X, Zhang W, Wang J, Xu L, Zhou Y, Ma X, Liu L, Zhao Z, Huang X, Fan J, Dong L, Chen G, Ma L, Yang J, Chen L, He M, Li M, Zhuang X, Huang K, Qiu K, Yin G, Guo G, Feng Q, Chen P, Wu Z, Wu J, Ma L, Zhao J, Luo L, Fu M, Xu B, Chen B, Li Y, Tong T, Wang M, Liu Z, Lin D, Zhang X, Yang H, Wang J and Zhan Q (2014) Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 509(7498):91-95.
Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I, Birchmeier W and Schlag PM (2009) MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med. 15(1):59-67.
Taguchi K and Yamamoto M (2017) The KEAP1-NRF2 system in cancer. Front Oncol. 7:85.
Tan DS, Holzner M, Weng M, Srivastava Y and Jauch R (2020) SOX17 in cellular reprogramming and cancer. Semin Cancer Biol. 67(Pt 1):65-73.
Tang YC, Hsiao JR, Jiang SS, Chang JY, Chu PY, Liu KJ, Fang HL, Lin LM, Chen HH, Huang YW, Chen YT, Tsai FY, Lin SF, Chuang YJ and Kuo CC (2021) c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation. Theranostics. 11(11):5232-5247.
To KK, Yu L, Liu S, Fu J and Cho CH (2012) Constitutive AhR activation leads to concomitant ABCG2-mediated multidrug resistance in cisplatin-resistant esophageal carcinoma cells. Mol Carcinog. 51(6):449-464.
Tonelli C, Chio IIC and Tuveson DA (2018) Transcriptional regulation by Nrf2. Antioxid Redox Signal. 29(17):1727-1745.
Tsuchida K, Tsujita T, Hayashi M, Ojima A, Keleku-Lukwete N, Katsuoka F, Otsuki A, Kikuchi H, Oshima Y, Suzuki M and Yamamoto M (2017) Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation. Free Radic Biol Med. 103:236-247.
Uhlenhopp DJ, Then EO, Sunkara T and Gaduputi V (2020) Epidemiology of esophageal cancer: update in global trends, etiology and risk factors. Clin J Gastroenterol. 13(6):1010-1021.
Vartanian S, Ma TP, Lee J, Haverty PM, Kirkpatrick DS, Yu K and Stokoe D (2016) Application of mass spectrometry profiling to establish Brusatol as an inhibitor of global protein synthesis. Mol Cell Proteomics. 15(4):1220-1231.
Villeneuve NF, Lau A and Zhang DD (2010) Regulation of the Nrf2–Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal. 13(11):1699-1712.
Wakabayashi N, Skoko JJ, Chartoumpekis DV, Kimura S, Slocum SL, Noda K, Palliyaguru DL, Fujimuro M, Boley PA, Tanaka Y, Shigemura N, Biswal S, Yamamoto M and Kensler TW (2014) Notch-Nrf2 axis: regulation of Nrf2 gene expression and cytoprotection by notch signaling. Mol Cell Biol. 34(4):653-663.
Wang H, Liu K, Geng M, Gao P, Wu X, Hai Y, Li Y, Li Y, Luo L, Hayes JD, Wang XJ and Tang X (2013) RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res. 73(10):3097-3108.
Wang H, Wang F, Ouyang W, Jiang X and Wang Y (2021) BCAT1 overexpression regulates proliferation and c-Myc/GLUT1 signaling in head and neck squamous cell carcinoma. Oncol Rep. 45(5).
Wang J, Ding S, Duan Z, Xie Q, Zhang T, Zhang X, Wang Y, Chen X, Zhuang H and Lu F (2016) Role of p14ARF-HDM2-p53 axis in SOX6-mediated tumor suppression. Oncogene. 35(13):1692-1702.
Wang X, Li X, Wang T, Wu SP, Jeong JW, Kim TH, Young SL, Lessey BA, Lanz RB, Lydon JP and DeMayo FJ (2018) SOX17 regulates uterine epithelial-stromal cross-talk acting via a distal enhancer upstream of Ihh. Nat Commun. 9(1):4421.
Wiebe MS, Nowling TK and Rizzino A (2003) Identification of novel domains within Sox-2 and Sox-11 involved in autoinhibition of DNA binding and partnership specificity. J Biol Chem. 278(20):17901-17911.
Williams CAC, Soufi A and Pollard SM (2020) Post-translational modification of SOX family proteins: key biochemical targets in cancer? Semin Cancer Biol. 67(Pt 1):30-38.
Xia D, Zhang XR, Ma YL, Zhao ZJ, Zhao R and Wang YY (2020) Nrf2 promotes esophageal squamous cell carcinoma (ESCC) resistance to radiotherapy through the CaMKIIα-associated activation of autophagy. Cell Biosci. 10:90.
Xie LX, Zhai TT, Yang LP, Yang E, Zhang XH, Chen JY and Zhang H (2013) Lymphangiogenesis and prognostic significance of vascular endothelial growth factor C in gastro-oesophageal junction adenocarcinoma. Int J Exp Pathol. 94(1):39-46.
Xu YR and Yang WX (2017) SOX-mediated molecular crosstalk during the progression of tumorigenesis. Semin Cell Dev Biol. 63:23-34.
Yang J, Liu X, Cao S, Dong X, Rao S and Cai K (2020a) Understanding esophageal cancer: the challenges and opportunities for the next decade. Front Oncol. 10:1727.
Yang JM, Ryu J, Kim I, Chang H and Kim IK (2020) Dll4 blockade promotes angiogenesis in nonhealing wounds of Sox7-deficient mice. Adv Wound Care (New Rochelle). 9(11):591-601.
Yang MH, Chang SY, Chiou SH, Liu CJ, Chi CW, Chen PM, Teng SC and Wu KJ (2007) Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene. 26(10):1459-1467.
Yang T, Li XN, Li L, Wu QM, Gao PZ, Wang HL and Zhao W (2014) Sox17 inhibits hepatocellular carcinoma progression by downregulation of KIF14 expression. Tumour Biol. 35(11):11199-11207.
Yesudhas D, Batool M, Anwar MA, Panneerselvam S and Choi S (2017) Proteins recognizing DNA: structural uniqueness and versatility of DNA-binding domains in stem cell transcription factors. Genes (Basel). 8(8).
Yin D, Jia Y, Yu Y, Brock MV, Herman JG, Han C, Su X, Liu Y and Guo M (2012) SOX17 methylation inhibits its antagonism of Wnt signaling pathway in lung cancer. Discov Med. 14(74):33-40.
Zare M, Jazii FR, Alivand MR, Nasseri NK, Malekzadeh R and Yazdanbod M (2009) Qualitative analysis of adenomatous polyposis coli promoter: hypermethylation, engagement and effects on survival of patients with esophageal cancer in a high risk region of the world, a potential molecular marker. BMC Cancer. 9:24.
Zhang J, Jiao Q, Kong L, Yu J, Fang A, Li M and Yu J (2018) Nrf2 and Keap1 abnormalities in esophageal squamous cell carcinoma and association with the effect of chemoradiotherapy. Thorac Cancer. 9(6):726-735.
Zhang M, Mathur A, Zhang Y, Xi S, Atay S, Hong JA, Datrice N, Upham T, Kemp CD, Ripley RT, Wiegand G, Avital I, Fetsch P, Mani H, Zlott D, Robey R, Bates SE, Li X, Rao M and Schrump DS (2012) Mithramycin represses basal and cigarette smoke-induced expression of ABCG2 and inhibits stem cell signaling in lung and esophageal cancer cells. Cancer Res. 72(16):4178-4192.
Zhang W, Zhu H, Liu X, Wang Q, Zhang X, He J, Sun K, Liu X, Zhou Z, Xu N and Xiao Z (2014) Epidermal growth factor receptor is a prognosis predictor in patients with esophageal squamous cell carcinoma. Ann Thorac Surg. 98(2):513-519.
Zhang Y, Bao W, Wang K, Lu W, Wang H, Tong H and Wan X (2016) SOX17 is a tumor suppressor in endometrial cancer. Oncotarget. 7(46):76036-76046.
Zhao T, Yang H, Tian Y, Xie Q, Lu Y, Wang Y, Su N, Dong B, Liu X, Wang C, Jiang C and Liu X (2016) SOX7 is associated with the suppression of human glioma by HMG-box dependent regulation of Wnt/β-catenin signaling. Cancer Lett. 375(1):100-107.
Zhou D, Bai F, Zhang X, Hu M, Zhao G, Zhao Z and Liu R (2014) SOX10 is a novel oncogene in hepatocellular carcinoma through Wnt/β-catenin/TCF4 cascade. Tumour Biol. 35(10):9935-9940.
Zhou W, Lo SC, Liu JH, Hannink M and Lubahn DB (2007) ERRbeta: a potent inhibitor of Nrf2 transcriptional activity. Mol Cell Endocrinol. 278(1-2):52-62.
Zhu P, Yu H, Zhou K, Bai Y, Qi R and Zhang S (2020) 3,3'-Diindolylmethane modulates aryl hydrocarbon receptor of esophageal squamous cell carcinoma to reverse epithelial-mesenchymal transition through repressing RhoA/ROCK1-mediated COX2/PGE2 pathway. J Exp Clin Cancer Res. 39(1):113.