簡易檢索 / 詳目顯示

研究生: 周麗嫺
Chou, Li-Hsien
論文名稱: 在1-乙基-3 -甲基-咪唑四氟硼酸離子液體中利用電沉積製備銅銦、鈀銅,鈀錫合金
Eleectrodeposiotion of Cu-In, PdCu, PdSn alloys from 1-ethyl-3-methylimidazolium Chloride tetrafluoroborate ionic liquid
指導教授: 孫亦文
Sun, I-Wen
黃守仁
Whang, Thou-Jen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 123
中文關鍵詞: EMI-Cl-BF4離子液體銅銦合金半導體硒鈀銅合金鈀錫合金乙醇催化ITO電極
外文關鍵詞: 1-ethyl-3-methylimidazolium Chloride tetrafluoroborate ionic liquid (EMI-Cl-BF4), Cu-In alloy, Se element, Pd-Cu alloy, Pd-Sn alloy, Electro-oxidation ethanol, Indium tin oxide conductivity glass (ITO)
相關次數: 點閱:92下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文,包含兩部分: (1)在離子液體中利用電化學方法電鍍銅銦合金與半導體硒元素
    (2)在離子液體中利用電化學方法電鍍以鈀為主的合金應用在乙醇
    催化中
    第一部分: 本論文,利用1-乙基-3 -甲基-咪唑四氟硼酸室溫離子液體當成電鍍液,電鍍銅銦合金與半導體硒;由於銅離子與銦離子的還原電位在水溶液中,是相差很大的,但在離子液體中,卻是相當接近,因此銅銦合金可以輕易的被共沉積出來。由結果得知,銅銦合金的比例,會因銅離子與銦離子的比例而有所改變,當銅離子的濃度越大,銅銦合金裡面的銦含量將會變少,且銦的還原電位將會往負的方向移動。相對的,若銅離子的濃度小於銦離子的濃度,則很容易可以得到銅銦含量比1:1的銅銦合金,並且此時,銅銦含量比,不會因為施加電位改變而產生變化。
    對於電鍍半導體硒,本實驗利用氧化硒溶在室溫離子液體裡電鍍出半導體硒元素,由CV可以了解,四價硒(Se4+)將會被還原成二價Se2+,在施予更高的負電壓又再繼續被還原成半導體Se元素,最後再被還原成硒負二價(Se2-)離子,利用XRD鑑定出硒元素是以t-Se的晶形存在。
    第二部分: 本論文在室溫離子液體中電鍍出以鈀為主的合金,鈀銅合金與鈀錫合金電鍍在玻璃基材上摻雜銦錫氧化物的導電玻璃(ITO),溫度控制在1200C。對於鈀銅合金的部分,由CV的數據可以得知,鈀的還原電位較正於銅的還原電位,但鈀的功函數大於銅的功函數,因此銅可以在鈀膜上,提前還原,也就是UPD的現象,且銅離子加入,將會使得鈀的還原電位往負的地方移動,而更靠近銅的還原電位峰,因此鈀銅可以被共沉積形成合金。再者,在UPD的電位下電鍍鈀銅合金,經由XRD鑑定可以得到固熔狀態的鈀銅合金,在較負的地方電鍍,可以得到銅含量較多的鈀銅合金。鈀銅合金薄膜在ITO基材有非常好的附著力,因此可用於催化乙醇,且也具有相當好的催化性質。
    對於鈀錫合金,錫二價離子(Sn2+)將會還原鈀二價離子(Pd2+),產生鈀奈米粒子沉澱以及自身氧化成錫四價離子(Sn4+)在1-乙基-3 -甲基-咪唑四氟硼酸離子液體溶液裡,因此研究是利用錫四價離子(Sn2+)與鈀二價離子(Pd2+)電鍍鈀錫合金薄膜。鈀錫合金薄膜的組成比例,不僅與還原電位有關係,同時也受到EMIC-BF4溶液中鈀二價離子(Pd2+)與錫四價離子(Sn2+)的濃度比例決定。藉由XRD鑑定,本實驗可以得到以鈀含量較多的固熔的鈀錫合金與錫含量較多的鈀錫合金,且SEM影像顯示出,鈀含量較多的固熔鈀錫合金呈現圓滑顆粒狀,然而錫含量較多的鈀錫合金呈現菱角塊狀。進一步,本實驗利用鈀錫合金薄膜做為乙醇氧化的催化材料,發現有著比純鈀薄膜更好的催化乙醇氧化能力。

    The dissertation includes two parts : (1) Electrodeposition of Cu-In alloy and Se element in 1-ethyl-3-methylimidazolium Chloride tetrafluoroborate ionic liquid (EMI-Cl-BF4) on Induim Tin Oxide glass Electrodes (ITO) and (2) Electrodepostion of Pd-base alloy in 1-ethyl-3-methylimidazolium Chloride tetrafluoroborate ionic liquid (EMI-Cl-BF4) for Ehtnaol electro-oxidation.
    Fristly, in this study, the EMI-Cl-BF4 was as electrodeposite solution for electrodeposition of Cu-In alloy and Se element. As has been mentioned, the redox potential of Cu(I)/Cu couple (-0.05 V vs. Ag/AgCl) and In(III)/In couple (-0.8 V vs. Ag/AgCl) in aqueous solutions are very different, but in EMI-Cl-BF4 ionic liquid, their reduciotn potential are so close that codeposited Cu-In alloy easily. For these results, the composition of Cu-In alloy is charged by the concentration ratios of Cu(II) and In(III) in EMI-Cl-BF4 ionic liquid. When the concentration of Cu(II) is much more, the reduction potential of In(III) is shifted the more negative and hard to reach the same ratio content for Cu-In alloy. On the other hand, the concentario of In(III) is more than Cu(II), it is easy to obtain the same ratio composition of Cu-In alloy. Samples of Cu-In electrodeposits were prepared with potentiostatic electrolysis and characterized with SEM, EDS and XRD techniques. The composition of the Cu-In electrodeposits is almost independent on the deposition potential except for in the more negative potential.
    Electrodeposition of the selenium film in 1-ethyl-3-methylimidazolium chloride-tetrafluoroborate ionic liquid containing excess chloride ions on indium tin oxide (ITO) coated glass electrodes was studied at 30oC. Cyclic voltammogrammetric results indicate that the reduction reaction of Se(IV) to Se(0) is not a simple four-electron reduction. Scanning electron microscopy reveals that the morphology of the selenium deposits is affected by the applied deposition potential and X-ray powder diffraction data indicates the Se deposits is the crystalline of t-Se phase.

    Secondly, the electrodeposition of palladium-copper alloys in 1-ethyl-3-methylimidazolium chloride–tetrafluoroborate ionic liquid containing excess chloride ions was studied on indium tin oxide (ITO) coated glass electrodes at 120°C. Cyclic voltammogrammetric results indicate that the thermodynamic deposition potential of copper is more negative than that of palladium. The presence of palladium(II) reduces the overpotential required for the deposition of copper. In addition, underpotential deposition of copper on the palladium electrode was observed. In contrast, the presence of copper(II) increases the overpotential required for the deposition of palladium. Palladium–copper coatings were prepared on the ITO electrode by constant potential electrolysis. Scanning electron microscopy results indicate that the deposits had nodular morphologies. Calculations from X-ray powder diffraction data show that the crystal size of the deposit decreased with increasing deposition overpotential. The prepared palladium–copper coatings adhered well on the ITO substrates and showed a good electrocatalytic capability for the electro-oxidation of ethanol in alkaline solution.
    Electrodeposition of palladium–tin alloys from 1-ethyl-3-ethylimidazolium chloride–tetrafluoroborate ionic liquid was studied at 120°C. Sn(II) chloride reacts spontaneously with Pd(II) chloride, producing Sn(IV) and Pd nanoparticles. Solutions containing Sn(IV) and Pd(II) were used for potentiostatic electrodeposition of Pd–Sn. The composition of the Pd–Sn electrodeposits varied with the solution composition and deposition potential. Different alloy phases were observed with X-ray diffraction measurements.
    Whereas the Pd-rich Pd–Sn solid solution deposits are composed of compact nodules, the Sn-rich intermetallic Pd–Sn deposits are composed of polyhedral crystals of various phases. Compared to Pd-coated electrodes, Pd–Sn solid-solution-coated electrodes show enhanced ethanol electro-oxidation efficiency and stability in alkaline aqueous solutions. As Sn content increased, new Pd/Sn intermetallic phases formed, resulting in reduced catalytic efficiency for ethanol oxidation.

    Abstract (in English)………………………………………………………………….IІI Abstract (in Chinese)………………………………………………………………...V Acknoelegment……………………………………………………...........................VII Caption of Tables……………………………………………………………………XII Caption of Figures………………………………………………………………….XIII Chapter I. The introduction of ionic liquids…………………………………………...1 1-1 The classification of ionic liquids…………………………………………..1 1-2 Advantages and drawbacks of ionic liquids………………………………...3 1-3 The application of ionic liquid……………………………………………...5 1-4 The development of ionic liquid…………………………............................6 1-5 The properties of ionic liquids for electrochemistry………………………..9 1-6 The electrodeposition from ionic liquids…………………..........................12 Chapter II : Background and Research motive………………………………………16 2-1 The Background of Solar Cell……………………………….........................16 2.1.1 The principle of solar cell……………………………………………….16 2.1.2 The variety of solar cell…………………………………........................16 2.1.3 The structure of the thin film solar cell for Copper indium selenide (CIS)……………………………………………………………18 2.1.4 The research motive for the electrodeposition of Cu-In alloy and Se film from ionic liquid………………………………………………………...18 2-2 The Background of Fuel Cell……………………………………………….19 2.2.1 The principle of Fuel Cell………………………………………………...19 2.2.2 The variety of Fuel Cell……………………………………......................20 2.2.3 The research motive of Pd-bace alloy film for the SOFC ethanol fuel cell (Direct ethanol fuel cell)………………………………….………………22 Chapter III : Experiment……………………………………………………………...27 3-1 Electrochemical methods…………………………………………………….27 3.1.1 Cyclic voltammetry……………………………………….......................27 3.1.2 Rotating disc electrode voltammetry……………………………………27 3.1.3 Chronoamperometry…………………………………………………….28 3.1.4 Coulometric experiment…………………………………………………29 3.1.5 Nucleation……………………………………………………………….30 3-2 The material and instrument of experiment………………………………….31 3.2.1 Glove box………………………………………………………………..31 3.2.2 Potentiostat/galvanostat…………………………………………………31 3.2.3 Three-electrode electrochemical cell……………………………………32 3.2.4 Scanning Electron Microscope………………………………………….32 3.2.5 TEM……………………………………………………………………..32 3.2.6 X-Ray Diffraction Meter………………………………………………...32 3-3 Reagents…………………………………………………….......................32 3.3.1 1-Ethyl-3-Methylimidazolium Chloride,EMIC…………………….32 3.3.2 1-ethyl-3-methylimidazolium Chloride tetrafluoroborate ionicliquid (EMI-Cl-BF4)……………………………………………………….33 3.3.3 Chemicals………………………………………………………………34 3.3.4 Ethanol electro-oxidation experiments…………………………………34 Chapter IV : Electrodeposition of Cu-In alloy and Se element in 1-ethyl-3-methylimidazolium Chloride Tetrafluoroborate Ionic Liquid (EMI-Cl-BF4) on Induim Tin Oxide Electrodes (ITO)……………37 4-1 Electrodeposition CuIn alloy film on indium tin oxide electrodes………….37 4.1.1 Introduction and background……………………………………………37 4.1.2 Result and discussion……………………………………………………38 4.1.2.1 Voltammetric behavior…………………………………………..38 4.1.2.2 Bulk ekectrodeposition of Cu-In………………………………..40 4.1.2.3 Summary and conclusions…………………………....................43 4-2 Electrodeposition Se element film on indium tin oxide electrodes………….52 4.2.1 Introduction and background…………………………………………….52 4.2.2 Results and discussions……………………………………......................52 4.2.2.1 Voltammetric behavior………………………………………………52 4.2.2.2 Characterization of Electrodeposited Selenium………......................53 4.2.3 Summary and conclusions…………………………………......................53 4.2.4 Future work……………………………………………………………….54 Chapter V: Electrodepostion of Pd-bace alloy From 1- Ethyl-3-Methylimidazolium Chloride Tetrafluoroborate Ionic Liquid on Indium Tin Oxide Electrodes for Ethanol electro-oxidation………..58 5-1 Electrodeposition PdCu alloy film on indium tin oxide electrodes for Ethanol electro-oxidation…………………………………………………………….58 5.1.1 Introduction and background……………………………………………58 5.1.2 Results and discussions………………………………………………….59 5.1.2.1 Voltammetric behavior……………………………………………..59 5.1.2.2 Preparation and characterization of Pd–Cu codeposits…………….62 5.1.3 Electro-oxidation of ethanol on Pd–Cu-coated electrode…………………65 5.1.3.1 Introduction…………………………………………..........................65 5.1.3.2 Results and discussion………………………………..........................66 5.1.4 Summary and conclusions……………………………………………..71 5-2 Electrodeposition PdSn alloy film on indium tin oxide electrodes for Ethanol electro-oxidation…………………………………………………………….89 5.2.1 Introduction and background…………………………………………….89 5.2.2 Results and Discussions…………………………………………………91 5.2.2.1 Voltammetric behavior……………………………………………..91 5.2.2.2 Preparation and characterization of Pd–Sn codeposits……………..92 5.2.2.3 Electro-oxidation of ethanol on Pd–Sn-coated graphite Electrodes……………………………………………...................94 5.2.3 Conclusions……………………………………………………………..96 Reference………………………………………………………………………….108 Captions of Tables Table 1.1 The melting point of alkali metal chloride molten salts……………………2 Table 1.2 The ions and notations adopted to describe the various cations……………8 Table 5.1Charges passed during the cathodic deposition, Qc, and the anodic stripping, Qa, estimated from cyclic voltammograms shown in Fig. 5.4…………….72 Table 5.2 if, ib, and if/ib measured from CVs of ethanol electrooxidation on Pd-ITO and PdxCu1-x-ITO electrodes with various compositions (x = 1 to 0.5)………73 Table 5.3 The atom content ratio of PdCu alloy film on graphite Substrates……………………………………………………………….....73 Captions of Figures Figure 1.1 Common ionic liquids include cation and anion ………………………..3 Figure 1.2 The quality of ionic liquids………………………………………………5 Figure 1.3 The electrochemical window of the Lewis acid-base ionic liquid. (a) Lewis base (b) neutral (c) Lewis acid EMIC-AlCl3……………………………10 Figure 1.4 The electrochemical window of the EMIC-BF4 ionic liquid (a) neutral (b) basic ionic liquid…………………………………………………………11 Figure 2.1 The structure of crystalline silicon solar cell..............................................23 Figure 2.2 The structure of the thin film solar cell for CIS………………………….24 Figure 2.3 The structure of the “Chalcopyrite” crystal for CuInSe2…………………24 Figure 2.4 The Structure of Fuel Cell…………………………………......................25 Figure 2.5 Structure and decribation of Proton Exchange Membrane Fuel Cell…….25 Figure 2.6 The structure of the SOFC methanol fuel cells……………......................26 Figure 3.1 (a) Potential-time profile used in cyclic voltammetry (b) cyclic voltammogram for a reversible reaction………………………………35 Figure 3.2 The glove box…………………………………………………………….35 Figure 3.3 The structure of three-electrode electrochemical cell……………………36 Figure 4.1 Cyclic voltammograms of (a)50mM Cu(II) and (b)50mM In(III) and 50mM Cu(II) plus (c) 30, (d) 50 mM In(III) in a EMI-Cl-BF4 ionic liquid at a ITO electrode at 30 oC. Scan rate is 50mVs-1………………………..45 Figure 4.2 Cyclic voltammograms of 50mM In(III) and (a) 0, (b) 1, (c) 20, (d) 40 and (e) 60mM Cu(II) in a EMI-Cl-BF4 ionic liquid at a ITO electrode at 30 oC. Scan rate is 50mVs-1……………………………………………………46 Figure 4.3 The EDX date of variation of the In content with deposition potential in the electrodeposits prepared from the EMI-Cl-BF4 ionic liquid (◆) 50 mM Cu(II) + 50 mM In(III). (■) 30mM Cu(II) + 50mM In(III) at 30oC…….47 Figure 4.4 XRD patterns (Cu Kα) of the Cu-In electrodeposits prepared on ITO substrates from EMI-Cl-BF4 ionic liquid containing: 50mM In(III) and (A)50, (B) 30 mM Cu(II) at 30 oC…………………………………..….48 Figure 4.5 SEM micrographs of Cu-In electrodeposits prepared on ITO substrates from a EMI-Cl-BF4 ionic liquid solution containing: 30mM In(III) and 50mM Cu(II) at a deposition potential of: (a)-1.0 V (In a/o = 4), (b) -1.1 V (In a/o = 43), (c) -1.2 V (In a/o = 46)…………………………………..49 Figure 4.6 SEM micrographs of Cu-In electrodeposits prepared on ITO substrates from a EMI-Cl-BF4 ionic liquid solution containing: 30 mM In(III) and 50 mM Cu(II) at a deposition potential of: (a)-1.0 V (In a/o = 5), (b) -1.2 V (Sn a/o = 12), (c) –1.3 V (Sn a/o = 29)(d).-1.5 V (Sn a/o = 47).............50 Figure 4.7 (a) SEM micrographs and EDS mappings of (b) Cu, and (c) In elements in the Cu–In electrodeposit prepared at -1.5 V….................................51 Figure 4.8 Cyclic voltammogram of a 50 mM solution of Se(IV) recorded at a GC electrode in the EMI-Cl-BF4 IL. The scan rate was 50 mVs-1 at 30 oC...55 Figure 4.9 XRD patterns (Cu Kα) of different deposited potential for preparing Se film on ITO substrates from EMI-Cl-BF4 ionic liquid at 30 oC………..56 Figure 4.10 SEM micrographs of Se film electrodeposits prepared on ITO substrates from a EMI-Cl-BF4 ionic liquid solution containing: 50 mM Se(IV) at a deposition potential of: (a) -0.6 V, (b)-0.75 V, (c) -1.15 V and (d) -1.4 V ………………………………………………………………………...57 Figure 5.1 Cyclic voltammograms of (a) 20 mM Cu(II), (b)30 mM Pd(II), and 20 mM Cu(II) plus (c) 10, (d) 30 mM Pd(II) in a EMI-Cl-BF4 ionic liquid at a ITO electrode at 120℃. Scan rate was 50mVs-1…………………………..74 Figure 5.2 Cyclic voltammograms of 20 mM Cu(II) in a EMI–Cl–BF4 ionic liquid recorded on a Pd electrode at 120°C……………………………………..75 Figure 5.3 (a) Cu(II) IL solution recorded on a Pd electrode scan the reduction of c3’ wave (-0.6 V) at different scan rate (b) 20 mM Cu(II) IL solution recorded on a Pd electrode scan was held at -0.55 V(c3’ wave) for 0, 20, 40, 60, 140s before reverse scan………………………………………76 Figure 5.4 Cyclic voltammograms of 30 mM Pd(II) and (a) 0, (b) 10, (c) 20, (d) 40 and (e) 50 mM Cu(II) in a EMI-Cl-BF4 ionic liquid at a ITO electrode at 120oC. Scan rate was 50mVs-1…………………………………………..77 Figure 5.5 (A)Cyclic voltammograms of 30mM Pd(II), and 10mM Cu(II) in a EMI-Cl-BF4 ionic liquid at a ITO electrode at 120oC. Scan rate was 10mVs-1…………………………………………………………………78 Figure 5.6 SEM micrographs of Pd-Cu electrodeposits prepared on ITO substrates from a EMI-Cl-BF4 ionic liquid solution containing: 30 mM Pd(II) and 10 mM Cu(II) at a deposition potential of: (a) -0.35 V, (b) -0.4 V, (c) -0.45 V and (d) -0.6 V…………………………………………………………..79 Figure 5.7 XRD patterns (Cu Kα) of the Pd-Cu electrodeposits prepared on ITO substrates from EMI-Cl-BF4 ionic liquid containing: 30mM Pd(II) and (A)10, (B) 40 mM Cu(II) at 120 oC…..................................................80 Figure 5.8 (a) The lattice parameter calculated from the position of the [111] peak in Fig. 5.7(A) vs. deposit composition. (b)The EDX date of variation of the Cu content with deposition potential in the electrodeposits prepared from the EMI-Cl-BF4 ionic liquid containing 30 mM Pd(II) and 10 mM Cu(II). The Cu content was determined from: (◆) EDS data, and (■) XRD data using Vegard’s rule. Deposition temperature was 120oC.....................81. Figure 5.9 (A) Cyclic voltammograms recorded on the Pd-ITO, the Cu-ITO and Pd60Cu40 -ITOelectrodes in 1M KOH (B) The multi-cycle voltammograms of a Pd0.6Cu0.4-ITO electrode in a 1.0M KOH solution……………………………………………………………….82 Figure 5.10 CVs of ethanol oxidation in a 1.0 M KOH + 1.0 M C2H5OH solution on a Pd-ITO electrode (curve a), a Pd0.6Cu0.4-ITO electrode (curve b, alloy loading: 1.2x10-5 mol cm-2) and insert on a Cu-ITO electrode………83 Figure 5.11 (A) Multi-cycle voltammograms of Pd60Cu40 / ITO electrode in a 1.0 M KOH + 1.0 M C2H5OH solution. (B) The chronoamperometric experiment at 0.15 V versus Ag/AgCl in 1.0 M KOH + 1.0 M C2H5OH solution at room temperature. (curve a, Pd-ITO, curve b, Pd0.85Cu0.15-ITO, curve c, Pd0.75Cu0.25-ITO and curve d, Pd0.6Cu0.4-ITO). ………………………………………………………………………84 Figure 5.12 SEM image of a typical Pd0.6Cu0.4-ITO electrode (A) before and (B) after ethanol-oxidation experiment…………………………………………85 Figure 5.13 SEM micrographs of (a) pure graphite and (b) PdCu film on graphite substrates from a [EMIm]Cl-BF4 ionic liquid solution containing: 30mM Pd(II) and10mM Cu(II). Deposition temperature was 120oC………86 Figure 5.14 Cyclic voltammograms measured different content of Cu on PdCu alloy film in 1.0M KOH + 1.0M C2H5OH at graphite electrode and inset is (a) Pure graphite (b)Pure ITO (c) PdCu(60:40) film at ITO (d) PdCu(60:40) film at graphite in 1.0M KOH with 1.0M C2H5OH. Scan rate of 50mVs-1 ………………………………………………………………………..87 Figure 5.15(a)Cyclic voltammograms of ethanol oxidation (b) Chronoamperometric. curves for ethanol electrooxidation at -0.3V V versus Ag/AgCl on a PdCu film electrode with a Pd loading of 0.4 mg/ cm2 in 1.0 M KOH solution containing 1.0M ethanol at scan rate of 50 mVs-1…………………….88 Figure 5.16 Cyclic voltammograms of (a) 20mM Sn (II), (b) 20mM Sn (IV), (c) 50mM Pd (II) and plus (d) 10 and (e) 20 mM Sn(II) in a EMI-Cl-BF4 ionic liquid at a GC electrode at 120oC. Scan rate was 50mVs-1………97 Figure 5.17 (a)TEM of Pd clusters, (b) Pd nanoparticle and (c) Electron diffraction pattern of Pd nanoparticles from reaction of Sn(II) and Pd(II) in the EMI-Cl-BF4 at 120 oC………………………………………………98 Figure 5.18 The EDX date of variation of the Cu content with deposition potential in the electrodeposits prepared from the EMI-Cl-BF4 ionic liquid containing: (▲) 30 mM Pd(II) + 20 mM Sn(IV) and (■) 20 mM Pd(II) + 30 M Sn(IV)…………………………………………………………….99 Figure 5.19 XRD patterns (Cu Kα) of different Pd-Sn alloy electrodeposits prepared on ITO substrates from EMI-Cl-BF4 ionic liquid……………………..100 Figure 5.20 SEM micrographs of Pd-Sn electrodeposits prepared on ITO substrates from a EMI-Cl-BF4 ionic liquid solution containing: 20mM Pd(II) and 30mM Sn(II) at a deposition potential of: (a) -0.7 V (Sn a/o = 44), (b) -0.8 V (Sn a/o = 62) and (c) -0.9 V (Sn a/o = 65). Deposition temperature was 120oC…………………………………………………………...101 Figure 5.21 SEM micrographs of Pd-Sn electrodeposits prepared on ITO substrates from a EMI-Cl-BF4 ionic liquid solution containing: 20mM Pd(II) and 30 mM Sn(II) at a deposition potential of: (a) -0.7 V (Sn a/o = 44), (b) -0.8 V (Sn a/o = 62) and (c) -0.9 V (Sn a/o = 65). Deposition temperature was 120oC…………………………………………………………………102 Figure 5.22 SEM micrographs of (a) Pd film and (b) Pd91Sn9 film deposited on graphite substrates from a EMI-Cl-BF4 ionic liquid solution containing: 30 mM Pd(II) and 20 mM Sn(IV). Deposition temperature was 120Co ……………………………………………………………………….103 Figure 5.23 Cyclic voltammograms recorded on the Pd/C, the Sn/C and PdSn /C electrodes: (a) without and (b) with ethanol in 1 M KOH……………104 Figure 5.24 Cyclic voltammograms recorded on (a) Pd97Sn3, (b) Pd91Sn9, (c) Pd75Sn25, and (d) Pd69Sn31 film-coated graphite electrodes in a 1.0 M KOH + 1.0 M C2H5OH solution………………………………………………………105 Figure 5.25 Multi-cycle voltammograms of PdxSn100-x /Celectrode in a 1.0 M KOH + 1.0 M C2H5OH solution……………………………………………….106 Figure 5.26 Current-time curve recorded for chronoamperometric experiment on various electrodes at - 0.15 V versus Ag/AgCl in 1.0 M KOH + 1.0 M C2H5OH solution at room temperature……………………………….107

    Reference
    1. K. R. Seddon, J. Chem. Tech. Biotrch, 1997, 68, 351.
    2. P. wasserscheid and W. Lein, Angew. Chem. Int. Ed, 2000, 39, 3772
    3. R. D. Rogers and K. R. Seddon , Science, 2003, 302, 792.
    4. M. R. Bermejo, F. de la Rosa, E. Barrado and Y. Castrillejo, J. Electroanal.Chem., 2007, 603, 81.
    5. C. Nourry, L. Massot and P. Chamelot , P. Taxil, 2009, 39, 2359.
    6. M. Gibilaro, L. Massot and P. Chamelot, P. Taxil, 2008, 382, 39.
    7. J. M. Schafir and J. A. Plambeck, Cana. J. Chem., 1970, 48, 2131.
    8. N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev., 2008, 37, 123.
    9. M. J. Earle and K. R. Seddon, Pure Appl. Chem., 2000, 72, 1391.
    10. W. Simka and D. Puszczyk, G. Nawrat, 2009, 54, 5307.
    11. S. Zein El Abedin and F. Endres, ChemPhysChem 2006, 7, 58.
    12. M. Galin´ ski, A. Lewandowski and I. S. pniak, Electrochim. Acta 2006, 51, 5567.
    13. M.C. Buzzeo, R.G. Evans and R.G. Compton, ChemPhysChem 2004, 5, 1106.
    14. C. Nanjundiah, S. F. McDevit and V. R. Koch, J. Electrochem. Soc., 1997, 144, 3392
    15. M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara and Y. Ito,
    J. Electrochem.Soc. 2003, 150, A499.
    16. H. Matsumoto, T. Matsuda, T. Tsuda, R. Hagiwara, Y. Ito and Y. Miyazaki,Chem. Lett. 2001, 26
    17. H. Randriamahazaka, C. Plesse, D. Teyssie and C. Chevrot, Electrochem.Commun. 2003, 5, 613.
    18. Y. Ito and T. Nohira, Electrochim. Acta, 2000, 45, 2611.
    19. J. Fuller, A. C. Breda and R. T. Carlin, J. Electrochem. Soc. 1997, 144, L67.
    20. J. F. Huang and I. W. Sun, Electrochim. Acta 2004, 49, 3251.
    21. Y. Katayama, S. Dan, T. Miura and T. Kishi, J. Electrochem. Soc., 2001, 148,
    C102.
    22. M. H. Yang, M.C. Yang and I. W. Sun, J. Electrochem. Soc., 2003, 50, C544.
    23. S. I. Hsiu and I. W. Sun, J. Appl. Electrochem.,2004, 34, 1057.
    24. P. Y. Chen, Y. F. Lin and I. W. Sun, J. Electrochem. Soc., 1999, 146, 3290.
    25. H. Y. Yang and I. W. Sun, Electroanalysis 1999, 11, 195.
    26. M. L. Chen, Y. N. Zhao, D. W. Zhang, Y. Tian and J. Hua. Wang, J. Anal. At.
    Spectrom., 2010, 25, 1688.
    27. M. C. Buzzeo, O. V. Klymenko, J. D. Wadhawan, C. Hardacre, K. R. Seddon and
    R. G. Compton, J. Phys. Chem. A 2003, 107, 8872.
    28. I. M. AlNashef, M. L. Leonard, M. A. Matthews, J. W. Weidner, Ind. Eng.Chem.
    Res. 2002, 41, 4475.
    29. M. C. Buzzeo, D. Giovanelli, C. Hardacre, K. R. Seddon, R. G. Compton, Electroanalysis, in press
    30. F. Endres, M. Bukowski, R. Hempelmann, and H. Natter, Angew. Chem. Int. Ed.
    2003, 42, 3428.
    31. C. G. Granqvist, R. A. Buhrman, J. Appl. Phys. 1976, 47, 2200.
    32. J. C. Li, S. H. Nan, Q. Jiang, Surf. Coat. Technol. 1998, 106, 135.
    33. P. Wasserscheid, W. Keim, Angew. Chem. 2000, 112, 3926; Angew. Chem. Int.
    Ed. 2000, 39, 3772.
    34. P. J. Smith, A. Sethi and T. Welton, NATO Sci. Ser. II: Math. Phys. Chem.2002,
    52, 345.
    35. B. M. Quinn, Z. Ding, R. Moulton and A. J. Bard, Langmuir, 2002, 18, 1734.
    36.G. Mamantov, G. S. Chen, H. Xiao, Y. Yang and E.Hondrogiannis, J. Electrochem. Soc., 1995, 142, 1758.
    37. P.Walden, Bull. Acad. Imper. Sci. (1914) 1800.
    38. F. H. Hurley, U. S. Patent, 1948, 244, 6331.
    39.D. F. Evans, S. H. Chen, G. W. Schriver and E. M. Amett, J. Am. Chem. Soc.,
    1981, 103, 481.
    40. J. Robinson and R.A. Osteryoung, J. Am. Chem. Soc. 1979, 101, 323.
    41. J.S. Wilkes, J.A. Levisky, R.A.Wilson and C.L. Hussey, Inorg. Chem. 1982,21,1236.
    42. T.M. Laher and C.L. Hussey, Inorg. Chem. 1983, 22, 3247.
    43. T.B. Scheffler and C.L. Hussey, Inorg. Chem. 1984, 23, 1926.
    44. T.B. Scheffer, C.L. Hussey, K.R. Seddon, C.M. Kear and P.D. Armitage, Inorg.
    Chem.1983, 22, 2099.
    45. F. H. Hurley, T. P. Wier, Jr., J. Electrochem. Soc., 1951, 98, 207.
    46. R. A. Carpio, L. A. King, R. E. Lindstrom, J. C. Nardi, and C. L. Hussey, J.
    Electrochem. Soc., 1979, 126, 1644.
    47. A. A. Fannin, Jr,. D. A. Floreani, L. A. King, J. S. Landers, B. J.
    Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, and J. L. Williams, J. Phys. Chem., 1984, 88, 2614.
    48. M. Lipsztajn and R. A. Osteryoung, J. Electrochem. Soc., 1983, 130, 1968.
    49. W. W. Porterfield and J. Y. Yoke, in “Advences in Chemistry Series”, No. 150, Chapter 20, American Chemical Society, Washington, D. C. (1976).
    50. C. L. Hussey, in “Advance in Molten Salt Chemistry”, Vol. 5, G. Mamantov,
    Editor, pp. 185, Elservier Science Publishing Co., Amsterdam (1983).
    51. C. L. Hussey, Pure Appl. Chem., 1988, 60, 1763.
    52. J.S. Wilkes, M.J. Zaworotko, J. Chem. Soc. Chem. Commun., 1992, 965.
    53. V. R. Koch, C. Nanjundiah, G. B. Appetecchi, and B. Serosati, J. Electrochem.
    Soc., 1995, 146, L116.
    54. P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Gratzel,
    Inorg. Chem., 1996, 35, 1168.
    55. K. R. Seddon, A. Stark, and M. J. Torres, Pure. Appl. Chem., 2000, 72, 2275.
    56. J. Fuller, R. T. Carlin, H. C. De Long and D. Haworth, J. Chem. Soc., 1997, 144,
    3881.
    57. D. R. MacFarlane, P. Meakin, J. Sun, N. Amini and M. Forsyth, J. Phys. Chem. B,
    1999, 103, 4164.
    58. P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel,
    Inorganic Chemistry, 1996, 35, 1168.
    59. R. J. Gale, B. Gillbert, and R. A. Osteryoung, Inorg. Chem.1978, 17, 2728.
    60. E. Ryteer, H. A. Oye, S. J. Cyvin, B. N. Cyvin, and P. J. Klaelboe, J. Inorg. Nucl.
    Chem., 1973, 35, 1185.
    61. R. J. Gale and R. A. Osteryoung, Inorg. Chem. 1980, 19, 2242.
    62. G. R. Stafford, J. Electrochem. Soc., 1989, 136, 635.
    63. J. L. Gary and G. E. Maciel, J. Am. Chem. Soc., 1981, 103, 7147.
    64. T. Matsumoto and K. Ichikawa, J. Am. Chem. Soc., 1984, 106, 4316
    65. C. L. Hussey, T. B. Scheffler, J. S. Wilkes, and A. A. Fannon, Jr., J. Electrochem.
    Soc., 1986, 113, 1389.
    66. J. P. Schoebrechts and B. P. Gillebrt, J. Electrochem. Soc., 1981, 128, 2679.
    67. Z. J. Karpinski and R. A. Osteryoung, Inorg. Chem., 1985, 24, 2259.
    68. J. Robinson and R. A. Osteryoung, J. Am. Chem. Soc., 1979, 101, 323.
    69. C. L. Hussey, L. A. King, and J. S. Wilkes, J. Electroanal. Chem., 1979, 102, 321.
    70. M. Lipsztajn and R. A. Osteryoung, J. Electrochem. Soc., 1983, 130, 1968.
    71. R. T. Carlin, H. C. De Long, J. Fuller and P. C. Trulove, J. Electrochem. Soc.,
    1994, 141, L73.
    72. Y. NuLi, J. Yang and P.Wang, Appl. Surf. Sci. 2006, 252, 8086.
    73. N. Amir, Y. Vestfrid, O. Chusid, Y. Gofer and D. Aurbach, J. Power Sources, 2007, 174, 1234.
    74. Y. NuLi, J. Yang and R.Wu, Electrochem. Commun. 2005, 7, 1105.
    75. P. Giridhar, K.A. Venkatesan, T.G. Srinivasan and P.R. Vasudeva Rao,
    Electrochim. Acta 2007, 52, 3006.
    76. S. Legeai, S. Diliberto, N. Stein, C. Boulanger, J. Estager, N. Papaiconomou and
    M. Draye, Electrochem. Commun. 2008, 10, 1661.
    77. M.J. Deng, P.Y. Chen and I.W. Sun, Electrochim. Acta, 2007, 53, 1931.
    78. P.Y. Chen and C.L. Hussey, Electrochim. Acta, 2007, 52, 1857.
    79. A.P. Abbott, G. Capper, K.J. McKenzie and K.S. Ryder, J. Electroanal. Chem.
    2007, 599, 288.
    80. Y. Bando, Y. Katayama andT. Miura, Electrochim. Acta, 2007, 53, 87.
    81. C.C. Tai, F.Y. Su and I.W. Sun, Electrochim. Acta, 2005, 50, 5504.
    82. P. Yu, J. Yan, J. Zhang and L. Mao, Electrochem. Commun., 2007, 9, 1139.
    83. J.F. Huang and I.W. Sun, Electrochim. Acta, 2004, 49, 3251.
    84. S.I. Hsiu, C.C. Tai and I.W. Sun, Electrochim. Acta, 2006, 51, 2607.
    85. S.P. Gou and I.W. Sun, Electrochim. Acta, 2008, 53, 2538.
    86. M.J. Deng, I.W. Sun, P.Y. Chen, J.-K. Chang and W.-T. Tsai, Electrochim. Acta,
    2008, 53, 5812.
    87. C.L. Aravinda, B. Burger and W. Freyland, Electrochim. Acta, 2003, 48, 3053.
    88. N. Tachikawa, N. Serizawa, Y. Katayama and T. Miura, Electrochim. Acta, 2008, 53, 6530.
    89. M.H. Yang and I.W. Sun, J. Appl. Electrochem. 2003, 33, 1077.
    90. G.B. Pan, and W. Freyland, Electrochim. Acta, 2007, 52, 7254.
    91. Y.S. Fung and W.B. Zhang, J. Appl. Electrochem. 1997, 27, 857.
    92. http://www.soton.ac.uk/~solar/intro/tech6.htm.
    93. http://en.wikipedia.org/wiki/Solar_cell#Crystalline_silicon
    94. D. S. Kim, A. M. Gabor, V. Yelundur, A. D. Upadhyaya, V. Meemongkolkiat and
    A. Rohatgi, “String Ribbon Silicon Soalr Cells With 17.8% Efficiency” from
    University Center for Excellence in Photovoltaic Research and Education; School
    of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta,
    GA 30332 USA and Evergreen Solar Inc., 259 Cedar Hill St., Marlboro, MA
    01752 USA/
    95.http://www.solarbuzz.com/
    96. V. M. Fthenakis, Renewable and Sustainable Energy Reviews, 2004, 8, 303
    97. S. P. Grindle and C. W. Smith, Appl. Phys. Lett., 1989, 54, 1918.
    98. J. J. M. Binsma and H. A. Vanderlinden, Thin Solid Films, 1982, 97, 237.
    99. G. Hodes, T. Engelhand, D. Cahen, L. Kazmerski and C.R. Herrington, Thin
    Solid Films, 1985, 128, 93.
    100. J. Herrero and J. Hortega, Sol. Energy Mater., 1988, 17, 257.
    101. A. Carlos, P. J. Sebastain, O. Solorza, Materials and Manufacturing Process,
    1997, 7, 417.
    102. Z. A. Zhang, F. Y. Liu, Y. Lu, Y. Q. Lai, J. Li and Y. X. Liu, The Chinese
    Journal of Nonferrous Metals, 2007, 17, 560.
    103. J. E. Jaffe and A. Zunger, Phys. Rev. B, 1983, 28, 5822.
    104. http://en.wikipedia.org/wiki/Fuel_cell
    105. http://www1.eere.engry.gov/hydrogenandfuelcells/fuelcells/fc_types.html.
    106. http://www.fueleconomy.gov/feg/fcv_PEG.shtml
    107. K. Hayashi, O. Yamamoto, H. Minoura, Solid State Ionics, 2000, 302, 343
    108. 葉雲傑 ,張家豪, 張家維, 國立台灣大學化學系,化學所,
    材料與能源,觸媒分析方法。
    109. C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau and J.M. Leger, J.
    Power Sources, 2002, 105, 283.
    110. Z. Liu, X.Y. Ling, X. Su, J.Y. Leea and L.M. Gan, J. Power Source, 2005, 149,
    1.
    111. S. Liao, K.A. Holmes, H. Tsaprailis and V.I. Birss, J. Am. Chem. Soc., 2006, 128, 3504.
    112. X. Zhang, W. Lu, J. Da, H. Wang, D. Zhaoa and P. A Webley, Chem. Commun., 2009, 195, 195.
    113. P.K. Shena and C.W. Xu, Electrochem. Commun., 2006, 8, 184.
    114. C. Xu, P.K. Shena and Y. Liu, J. Power Source, 2007, 164, 527.
    115. J. Liu, J. Ye, C. Xu, S.P. Jianga and Y. Tong, Electrochem. Commun., 2007, 9,
    2334.
    116. J.S. Spendelow andA. Wieckowski, Phys. Chem. Chem. Phys.2007, 9, 2654.
    117. J. L. Cohen, D. J. Volpe and He’ctor D. Abrun, Phys. Chem. Chem. Phys., 2007,
    9, 49.
    118. Q. Shen, Q. Min, J. Shi, L. Jiang, J.R. Zhang, W. Hou and J.J. Zhu, J. Phys.
    Chem. C, 2009, 113, 1267.
    119. C. Xu, H. Wang, P. K. Shen and S.P. Jiang, Adv. Mater., 2007, 19, 4256.
    120. Z. Yin, H. Zheng, D.Ma, and X. Bao, J. Phys. Chem. C, 2009, 113, 1001.
    121. M. Lopezatalaya, E. Morallon, F. Cases, J.K.V. Vazqueza and J.M. Perez, J.
    Power Sources, 1994, 52, 109.
    122. M. Baldauf and D.M. Kolb, J. Phys. Chem. 1996, 100, 11375.
    123. Y. Morimoto and E.B. Yeager, J. Electroanal. Chem., 1998, 441, 77.
    124. K.W. Park, J.H. Choi, B.K. Kwon, S.A. Lee, Y.E. Sung, H.Y. Ha, S.A. Hong, H.
    Kim and A. Wieckowski, J. Phys. Chem. B, 2002, 106, 1869.
    125. E.E. Switzer, T.S. Olson, A.K. Datye, P. Atanassov, M.R. Hibbs, and C.J.
    Cornelius, Electrochim. Acta, 2009, 54, 989.
    126. M. Nie, H. Tang, Z. Wei, S.P. Jiang and P.K. Shen, Electrochem. Commun.,
    2007, 9, 2375.
    127. L.H. Jou, J.K. Chang, T.J. Whang, and I-W. Sun, J. Electrochem. Soc., 2010,
    157, D443.
    128. W. M. MacNevin and B. B. Baker, Anal. Chem., 1952, 24, 986
    129. E. Budevski, G. Staikov and W. J. Lorenz, Electrochim. Acta, 2000, 45, 2559.
    130. G. Gunawardena, G. Hill, I. Montenegro and B. Scharifker, J. Electroanal,
    Chem., 1982, 138, 225.
    131. G. Gunawardena, G. Hill and I. Montenegro, J. Electroanal. Chem.,
    1982, 138, 241.
    132. G. Gunawardena, G. Hill and I. Montenegro, 1985, 184, 357.
    133. A. Milchev, S. Stoyanov and R. Kaischev, Thin Solid Films, 1974, 22, 255.
    134. G. J. Hills, D. J. Schiffrin and J. Thompson, Electrochim Acta, 1974, 19, 657.
    135. I. Markov and E. Stoycheva, Thin Solid Films, 1976, 35, 21.
    136. V. Tsakova and A. Milchev, J. Electroanal. Chem., 1986, 197, 359.
    137. A. Milchev, V. Tsakova, T. Chierchie, K. Juttner and W. J. Lorenz,
    Electrochim. Acta, 1986, 31, 971.
    138. J.S. Wilkes, J.A. Levisky, R.A. Wilson, C.L. Hussey, Inorg. Chem., 1982, 21,
    1263.
    139. P.Y. Chen and I.W. Sun, Electrochim. Acta, 1999, 45, 441.
    140. P.Y. Chen and I.W. Sun, Electrochim. Acta, 2000, 45, 3163.
    141. A. Antony, A.S. Asha, R. Yoosuf, R. Manoj and M.K. Jayaraj, Solar
    Energy Materials & Solar Cell, 2004, 81, 407.
    142. T. Nakano, T. Suzuki, N. Ohnukia and S. Baba, Thin Solid Films, 1998, 334,
    192.
    143. R. Scheer, T. Walter, H. W. Shock, M. L. Fearheiley and H. J. Lewerenz, Appl.
    Phys. Lett, 1993, 63, 3294.
    144. H. W. Schock, Appl. Surf. Sci., 1996, 92, 606.
    145. J. S. Fang, J. Vacuum Soc. R.O.C. 2007, 9, 24.
    146. P. J. Ding and W. A. Landford, Appl. Phys. Lett., 1994, 64, 2897.
    147. L. Stolt, K. Granath, E. Niemi, M. Bodegard, J. Hedström, S. Bocking, M. Carter, M. Burgelman, B. Dimmler, R. Menner, M. Powalla, U. Rühle, and H. W. Schock, in Proceedings of 13th European Photovoltaic Solar Energy Conference, p. 1451, Nice, France (1995).
    148. T. Arai, A. Makita, Y. Hiromasu and H. Takatsuji, Thin Solid Films, 2001, 383,
    287.
    149. S. P. Grindle and C. W. Smith, Appl. Phys. Lett.,1989, 54, 1918.
    150. J. J. M. Binsma and H. A. Vanderlinden, Thin Solid Films, 1982, 97, 237.
    151. G. Hodes, T. Engelhand, D. Cahen, L. Kazmerski and C.R. Herrington, Thin Solid Films, 1985, 128, 93.
    152. J. Herrero and J. Hortega, Sol. Energy Mater., 1988, 17, 257.
    153. A. Gupta, A. N. Tiwari and A. S. N. Murthy, Sol. Energy Mater.1988, 18, 1.
    154. S. R. Kumar, R. B. Gore and R. K. Pandey, Sol. Energy Mater. Sol. Cells, 1992,
    26, 149.
    155. D. Pottier and G. Maurin, J. Appl. Electrochem., 1989, 19, 361.
    156. R. N. Bhattachary and R. Rayershwar, Sol. Cells, 1986, 16, 237.
    157. M. G. Ganchev and K. D. Kochev, Sol. Energy Mater. Sol. Cells, 1993, 31, 163.
    158. C. L. Hussey, J. S. Wilkes, in: A.I. Mamantov, Popov (Eds.), Chemistry of
    Nonaqueous Solutions, Current Progress, VCH, New York, 1994, p. 227.
    159. G.R. Stafford, C.L. Hussey, in: D.M. Alkire, Kolb (Eds.), Advances in
    Electrochemical Science and Engineering, vol. 7, Wiley-VCH, 2001, p. 27
    160. M.C. Buzzeo, R.G. Evans and R.G. Compoton, Chem. Phys. Chem., 2004, 5,
    1106.
    161. C. Tiyapiboonchaiya, J. M. Pringle, D. R. MacFarlane, M. Foryth and J. Sun,
    Macromol. Chem. Phys., 2003, 204, 2147.
    162. R. F. de Souza, J. C. Padilha, R. S. Goncalves and J. Dupont, Electrochem.Commun. 2003, 5, 728.
    163. T. Welton, Chem. Rev. 1999, 99, 2071.
    164. P. Wasserscheid and T. Welton (Eds.), Ionic Liquids in Synthesis, Wiley-VCH,
    Weinheim, 2002.
    165. S. Dai, Y.H. Ju and C.E. Barns, J. Chem. Soc., Dalton Trans. 1999, 1201.
    166. J.L. Anderson and D.W. Armstrong, Anal. Chem., 2003, 75, 4851.
    167. G.R. Stafford, C.L. Hussey, in Advances in Electrochemical Science and
    Engineering, Vol. 7, R.C. Alkire , D.M. Kolb eds., Wiley-VCH, Verlag GmbH
    (2002).
    168. Y. Katayama, in Electrochemical Aspects of Ionic Liquids, H. Ohno ed. Chapt. 9, Wiley & Sons, Inc., New York, (2005).
    169. F. Endres, A.P. Abbott and D.R. MacFarlane, eds.,Electrodeposition
    from Ionic Liquids, Wiley-VCH, Verlag GmbH, 2008.
    170. S.Z. Abedin, A.Y. Saad, H.K. Farag, N. Borisenko and F. Endres, Electrochim.
    Acta, 2007, 52, 2747.
    171. M. Morimitsu M, Y. Nakahara and M. Matsunaga, Electrochemistry, 2005, 73, 754.
    172. J. S. Yu Liu, I. W. Sun, J. Electrochem. Soc., 1997, 144, 140.
    173. M. Kemell, M. Ritala, H. Saloniemi, M. Leskelä, T. Sajavaara and E.
    Rauhala, J. Electrochem. Soc., 2000, 147, 1080.
    174. V.F. Gremenok, T, E.P. Zaretskaya, V.M. Siarheyeva, K. Bente, W.
    Schmitz, V.B. Zalesski and H.J. Mfller, Thin Solid Films, 2005, 487,
    193.
    175. S. Agilan, D. Mangalaraj, S. K. Narayandass, G. M. Rao and S. Velumani, Vacuum, 2010, 84, 1220.
    176. P. P. Hankare A P. A. Chate A D. J. Sathe A and A. A. Patil, J Mater Sci: Mater Electron, 2009, 20, 776.
    177. U. Farva and C. Park, Materials Letters, 2010, 64, 1415.
    178. Y. Lai, F. Liu, J. L. Zhang and Y. Liu, J. Electroanal. Chem., 2010, 639, 187.
    179. S. Zein El Abedin, A.Y. Saad, H.K. Farag, N. Borisenko, Q.X. Liu and F. Endres, Electrochimica Acta, 2007, 52, 2746.
    180. E.S. Lokteva, T. N. Rostovshchikova, S.A. Kachevskii, E. V. Golubina, V.V. Smirnov, A. Yu. Stakheev, N.S. Telegina, S.A. Gurevich, V.M. Kozhevin, D.A. Yavsin, Kinetics and Catalysis, 2008, 49, 748.
    181. M.G. Davie, K. Shih, F.A. Pacheco, J.O. Leckie, M. Reinhaed, Environ. Sci.
    Technol,2008, 42, 3040.
    182. J. Cossy, D. Belotti, Org. Lett.,2002, 4, 2557.
    183. L. Yin and A. Mostafa, El-Sayed, J. Phys. Chem. B., 2001, 105, 8989.
    184. B. Coq, F. Figueras, Journal of Molecular Catalysis A: Chemical, 2001, 173,
    117.
    185. A.F. Lee, C.J. Baddeley, C. Hardacre, G.D. Moggridge, R.M. Ormerod and R.M.
    Lambert, J. Phys. Chem. B,1997, 101, 2797.
    186. S.Yu, U. Welp, L.Z. Hua, A. Rydh, W.K. Kwok and H.H. Wang,Chem. Mater.,2005, 17, 3445.
    187. M. Yamauchi and H. Kitagawa, Synthetic Metals.,2005, 153, 353.
    188. M.Y. Wang, X.J. Liu, J. Meng and Z.J. Wu, Journal of Molecular Structure: Theochem,2007, 804, 47.
    189. F. Berger, M. Varga, G. Mulas, Ä . Molna´ r, and I. De´ka´ny,
    Langmuir, 2003, 19, 3692.
    190. J.B. Miller, C. Matranga and A.J. Gellman, Surface Science, 2008, 602, 375.
    191. L. Yuan, A. Goldbach and H. Xu, J. Phys. Chem. B, 2007, 111, 10952.
    192. R. Pietrzak and R. Szatanik, Physica B, 2005, 367, 165.
    193. J.B. Miller, B.D. Morreale, A. J. Gellman, Surface Science,2008, 602, 1819.
    194. O.M. Ilinitch, F.P. Cuperus, V. Nosova and E.N. Gribov, Catalysis Today,2000,
    56, 137.
    195. X. Zhu, G. Kang and X. Lin, Microchim Acta., 2007, 159,141.
    196. J. Daum and K. D. Vorlop, Chem. Eng. Technol., 1999, 22,199.
    197. A. Hammoudeh, M.S. Mousa and J.L. Cackovic, Vacuum, 1999, 54, 239.
    198. M.S. Mousa, A. Hammoudeh, J.L. Cackovic and J.H. Block, Journal of
    Molecular catalysis A: chemical, 1995, 96, 271.
    199. M.F. Garc´ıa, A.M. Arias, C. Belver, J.A. Anderson, J.C. Conesa and J. Soria,
    Journal of Catalysis, 2000, 190, 387.
    200. A. Hammoudeh, J.L. Cackovic, M.S. Mousa and J.H. Block, Vacuum,1997, 48,
    187..
    201. J. L. Cackovic, Vacuum, 1997, 48, 571.
    202. L. Yuan, A. Goldbach and H. Xu, J. Membrane Sci., 2008, 322, 39.
    203. J.S. Bradley, G.H. Via, L. Bonneviot and E. W. Hill, Chem. Mater., 1996, 8,
    1895.
    204. C.L. Hussey, J.S. Wilkes, in: A.I. Mamantov, Popov (Eds.), Chemistry of
    Nonaqueous Solutions, Current Progress, VCH, New York, 1994, p. 227.
    205. G.R. Stafford, C.L. Hussey, in: D.M. Alkire, Kolb (Eds.), Advances in
    Electrochemical Science and Engineering, vol. 7, Wiley-VCH, 2001, p. 275.
    206. Frank Endres, Chemphyschem., 2002, 3, 144.
    207. M.C. Buzzeo, R.G. Evans, R.G. Compton, ChemPhysChem., 2004, 5,1106.
    208. F.Y. Su, J.F. Huang, I.W. Sun, J. Electrochem. Soc., 2004, 151, C811.
    209. C.C. Tai, F.Y. Su, I.W. Sun, Electrochim. Acta, 2005, 50, 5504 .
    210. S.I. Hsiu, C.C. Tai, I.W. Sun, Electrochim. Acta, 2006, 51, 2607.
    211. E. Antolini, J. of Power Sources, 2007, 170, 1.
    212. I.W. Sun, C.L. Hussey, J. Electroanal. Chem.,1989, 274, 325.
    213. Ch. J. Rao, K. A. Venkatesan, K. Nagarajan, T.G. Srinivasan and P.R. Vasudeva
    Rao, Electrochim. Acta,2007, 53, 1911.
    214. P.Y. Chen and I.W. Sun, Electrochim. Acta,1999, 45, 441.
    215. D.M. Kolb, M. Przasnyski and H. Gerischer, J. Electroanal. Chem.,1974, 54, 25.
    216. E. Budevski, G. Staikov, W.J. Lorenz, Electrochemical Phase Formation and
    Growth, VCH, New York, 1996 (Chapter 3);
    217. H.B. Michaelson, in: R.C., Weast (Ed.), Handbook of Chemistry and Physics,
    CRC Press, Boca Raton, FL, 1984–1985, p. E76.
    218. I.W. Sun and C.L. Hussey, J. electroanal. Chem., 1989, 274, 325.
    219. Joint Committee on Powder Diffraction Standards – International Centre for
    Diffraction Data, NIST, 2001
    220. Thiago R. L. C. Paixão, Eduardo A. Ponzio, Roberto M. Torresi and Mauro
    Bertotti. J. Braz.Chem.Soc., 2006, 17, 374.
    221. M. Hasanzadeh, G. K. Nezhad , M.G. Mahjani, M. Jafarian, N. Shadjou, B.
    Khalilzadeh and L.A. Saghatforoush, Cata. Commun., 2008, 10, 295.
    222. T. R. L. C. Paixao, D. Corbo and M. Bertotti, Anal. Chim. Acta,2002, 472, 123.
    223. T. R. L. C. Paixão and M. Bertotti, J. Electroanal. Chem. 2004, 571, 101.
    224. M. Z. Luo and R. P. Baldwin, J. Electroanal. Chem.1995, 387, 87.
    225. Q. Shen, Q. Min, J. Shi, L. Jiang, J.R. Zhang, W. Hou, J.J. Zhu, J. Phys. Chem.
    2009, C 113, 1267.
    226. C. Xu, H. Wang, P. K. Shen, S.P. Jiang, Adv. Mater. 2007, 19, 4256.
    227. Z. Yin, H. Zheng, D.Ma, and X. Bao, J. Phys. Chem. C, 2009, 113, 1001.
    228. T.R.L.C. Paixão, D. Corbo and M. Bertotti, Anal. Chim. Acta, 2002, 472, 123.
    229. I. G. Casella and M. Contursi, J. Electroanal. Chem., 2006, 588, 147.
    230. T. Chierchie, C. Mayer and W. J. Lorenz, J. Electroanal. Chem., 1982, 135, 211.
    231. M. Elam and B. E. Conway, J. Electrochem. Soc., 1988, 15, 1678.
    232. M. C. Buzzeo, R. G. Evans and R. G. Compton, ChemPhysChem., 2004, 5, 1106.
    233. F. Endres., ChemPhysChem., 2002, 3, 144.
    234. C. L. Hussey and J. S. Wilkes, in: A.I. Mamantov, Popov (Eds.), Chemistryof
    Nonaqueous Solutions, Current Progress, VCH, New York,1994, p. 227.
    235. A. A.Jr. Fannin, D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J.
    Stech, R. L.Vaughn, J. S.Wilkes and J. L. Williams, J. Phys. Chem., 1984, 88,
    2614.
    236. P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, Wiley-VCH, Verlag
    Gmbh.
    237. J. Fuller, R. T. Carlin, H. C. De Long and D. Haworth, J. Chem. Soc., 1997, 144,
    3881.
    238. J. Fuller, R. T. Carlin, H. C. De Long and D. Haworth, J. Chem. Soc. Chem.
    Commun., 1994, 299.
    239. D. R. MacFarlane, P. Meakin, J. Sun, N. Amini and M. Forsyth, J. Phys. Chem.
    B,1999, 103, 4164.
    240. Y. Li and M. A. El-Sayed, J. Phys. Chem. B, 2001, 105, 8938.
    241. J. Cossy and D. Belotti, Org. Lett., 2002, 4, 2557.
    242. E. S. Lokteva, T. N. Rostovshchikova, S. A. Kachevskii, E. V. Golubina, V. V.
    Smirnov, A. Yu. Stakheev, N. S. Telegina, S. A. Gurevich, V. M. Kozhevin and
    D. A. Yavsinc, Kinet. Catal., 2008, 49, 748.
    243. B. Coq and F. Figueras , J. Molecul. Catal. A: Chem., 2001, 173, 117.
    244. J. P. Candy and J. M. Basset, J. Phys. Chem. B, 1997, 101, 2797.
    245. G. Cardenas, S. Salinas and R. Oliva, Colloid Polym Sci., 2003, 282, 41.
    246. G. Cárdenas , R. Oliva , P. Reyes and B. L. Rivas , J. Molecul. Cata. A: Chem., 2003, 191, 75.
    247. C. Breinlich , J. Haubrich , C. Becker , A. Valcárcel , F. Delbecq and K.
    Wandelt , J. Catal., 2007, 251, 123.
    248. A. Ciccioli, G. Balducci, G. Gigli, L. Perring and F. Bussy. Intermetallics, 2000, 8, 195.
    249. N. Tsud, V. Joh´anek, I. Star´a, K. Veltrusk´a and V. Matol´ın, Thin Solid Films, 2001, 391, 204
    250. M. R. Miah, M. T. Alam, T. Okajima, and T. Ohsaka, J. Electrochem. Soc., 2009, 156, B1142.
    251. I. Bakos and S. Szabo, Electrochim. Acta, 2001, 46, 2507.
    252. L. S. Jou, J-K. Chang, T-J. Whang, and I-W. Sun, J. Electrochem. Soc., 156, D193 (2009).
    253. W. Zhoua, Z. Zhoua, S. Songa, W. Li ,G. Suna, P. Tsiakaras and Q. Xin , Appl. Cata. B: Environ, 2003, 46, 273.
    254. C. Lamy, S. Rousseau, E. M. Belgsir, C. Coutanceau and J. M. Léger, Electrochim. Acta, 2004, 49, 3901.
    255. H. Berndt, I. Mönnich, B. Lücke and M. Menzel , Appl. Cata. B: Environ., 2001,
    30, 111.
    256. M. Menzel , H. Mehner , I. M¨onnich and H. Berndt , Hyper. Inter., 2000, 126, 89.
    257. J. P. Candy and J.M. Basset, J. Phys. Chem. B, 1997, 101, 2797.
    258. J. M. Hill, J. Shen, R. M. Watwe, and J. A. Dumesic, Langmuir, 2000, 16, 2213.
    259. J. Aran, P. Ramirez de la Piscina, J. Llorca, J. Sales, and N. Homs, Chem. Mater.,1998, 10, 1333.
    260. Z. Liu and X. Zhang, Electrochem. Commun., 2009, 11, 1667.
    261. Z. Zhang, J. Ge, L. Ma, J. Liao, T. Lu and W. Xing, Fuel Cells, 2009, 9, 114.
    262. X. H. Xu and C. L. Hussey, J. Electrochem. Soc.,1993, 140, 618.
    263. J. F. Huang and I W. Sun, J. Electrochem. Soc., 203, 150, E299.
    264. I.W. Sun and C.L. Hussey, J. Electroanal. Chem., 1989, 274, 325.
    265. C. J. Rao, K.A. Venkatesan, K. Nagarajan, T.G. Srinivasan, and P.R. Vasudeva Rao, Electrochim. Acta, 2007, 53, 1911.
    266. S. I. Hsiu, C. C. Tai, I W. Su, Electrochim. Acta, 2006, 51, 2607.
    267. M. Mathon , M. Gambino, E. Hayer, M. G. Escard and J. P. Bros, J. Alloy. Compd., 1999, 285, 123.
    268. Z. X. Liang, T. S. Zhao, J. B. Xu and L. D. Zhu, Electrochim. Acta, 2009, 54 2203.
    269. H. Wang, C. Xu , F. Cheng, M. Zhang , S. Wang and S. P. Jiang, Electrochem. Commun., 2008, 10, 1575.
    270. S.A.M. Refaey, F. Taha and T.H.A. Hasanin, Appl. Surf. Sci., 2004, 227, 416.
    271. C.i Xu, H. Wang, P. K. Shen, and S. P. Jiang, Adv. Mater., 2007, 19, 4256.
    272. Q. Shen, Q. Min, J. Shi, L. Jiang, J. R. Zhang, W. Hou, and J. J. Zhu, J. Phys. Chem. C, 2009, 113, 1267.

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE