簡易檢索 / 詳目顯示

研究生: 邱昱程
Chiu, Yu-Cheng
論文名稱: 開發原子序電子顯微術的各項應用
Exploring various applications of atomic number electron microscopy (ZEM)
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 80
中文關鍵詞: 原子序電子顯微術標準化背向散射電子影像氫化鈀
外文關鍵詞: Atomic number Electron Microscopy (ZEM), Standardization and quantification of backscattered electron imaging, Palladium Hydride
相關次數: 點閱:49下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 掃描式電子顯微鏡自其發展以來,已成為現代科技領域中不可或缺的重要工具。掃描式電子顯微鏡的核心技術在於使用電子束,使其具備了更佳的解析度,能夠更便於觀察到奈米尺度的結構。我們希望,能將掃描式電子顯微鏡加以突破,因而開發了原子序電子顯微術(ZEM),其原理是將電子束作為其熱源,將樣品放置於熱吸收測量平台,觀測樣品之熱吸收訊號,可藉此準確判定出其等效原子序,使掃描式電子顯微鏡的功能和性能進一步提升。
    首先,我們發現背向散射電子成像,因不易觀測到低起飛角的背向散射電子,使其構成了一個嚴重的系統誤差,且背向散射電子探測器,可以自行調整圖像的亮度和對比度,導致影像不能準確量化材料性質。因此,我們制定一套標準化方法,將ZEM 使用者依據材料的熱吸收率(Ath)所掃瞄出的Ath影像,與固定參數後的背向散射電子影像,進行影像擬合,即可使背向散射電子影像轉換成Ath影像,讓背向散射電子探測器的使用者,可以運用到ZEM精確和定量數據的長處,也使ZEM的使用者也能受益於快速方便的背向散射電子探測器。此外,我們還運用吸氫前後的鈀熱訊號做對比,觀測鈀相同點位下的熱吸收變化率。雖然每輪吸收氫氣的比率皆略有不同,但皆有點位展現出熱吸收率變化,這些結果不僅僅能由此判斷鈀吸收氫氣的位置,更能加以判斷其鈀所吸收氫氣的量,與由此產生的缺陷濃度。而這些ZEM本領都不是目前一般電子顯微鏡可做到的技術。

    Since its development, the scanning electron microscope (SEM) has become an indispensable tool in modern technology. The core technology of SEM lies in the use of an electron beam, providing superior resolution to observe structures at the nanoscale. To further enhance SEM capabilities, we developed the atomic number electron microscopy (ZEM), which uses the electron beam as a heat source. By placing samples on a thermal absorption measurement platform and observing their thermal absorption signals, we can accurately determine their equivalent atomic number, thereby improving SEM's functionality and performance.
    First, we found that backscattered electron imaging, which struggles to observe low-angle backscattered electrons, constitutes a significant systematic errors. Additionally, because image brightness and contrast can be arbitrarily adjusted by the backscattered electron detectors, it lead to inaccuracies in material property quantification. To address this, we devised a standardized method where ZEM users scan material's thermal absorbance (Ath) images and fit them with backscattered electron images under fixed parameters. This allows backscattered electron images to be converted into Ath images, enabling users to benefitted from the precise, quantitative data of ZEM, while ZEM users gain from the speed and convenient operations of backscattered electron detectors. Moreover, we compared the Ath of palladium before and after hydrogen absorption. Despite slight variations in hydrogen absorption rates in each cycle, specific points showed changes in Ath, allowing us to determine not only the locations where palladium absorbed hydrogen but also the quantity concentration. The capabilities demonstrated here are so far not achievable by ordinary electron microscopes.

    摘要 I Extended Abstract II 誌謝 XII 表目錄 XVI 圖目錄 VXII 符號 XX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 掃描式電子顯微鏡 2 1.2.2 原子序電子顯微術 2 1.2.3 儲氫材料研究 3 1.3 動機與目的 4 1.4 論文架構 5 第二章 基本理論 9 2.1 電子束與其交互作用 9 2.2 背向散射電子 9 2.3 原子序電子顯微術 10 2.4 比較背向散射電子影像與原子序電子顯微術影像 11 第三章 實驗架設與操作流程 18 3.1 熱吸收測量平台1.0 18 3.2 熱吸收測量平台2.0 18 3.2.1 熱吸收測量平台2.0的COMSOL模擬研究 18 3.2.2 熱吸收測量平台2.0的COMSOL模擬實驗 19 3.3 熱吸收測量平台製作 19 3.4 儀器架設 20 3.5 實驗操作流程 20 第四章 應用一:標準化背向散射電子影像 31 4.1 標準化背向散射電子影像的實驗操作 31 4.2 標準化背向散射電子影像的結果討論 32 第五章 應用二: 儲氫材料檢測實驗 40 5.1 儲氫材料的實驗操作 40 5.2 儲氫材料的結果討論 41 5.2.1 氫化鈀的影像處理 41 5.2.2 第一組實驗的結果分析 42 5.2.3 第二組實驗的結果分析 43 5.2.4 第三組實驗的結果分析 44 5.2.5 第一組實驗的缺陷分析 45 第六章 結論 54 6.1 本文結論 54 6.2 未來展望 54 參考文獻 58

    [1] Ernst Ruska, "The development of the electron microscope and of electron microscopy," Reviews of Modern Physics, vol. 59, no. 3, pp. 627-638, 1987.
    [2] Yuan, P., Wu, J. Y., Ogletree, D. F., Urban, J. J., Dames, C., & Ma, Y., "Adapting the electron beam from sem as a quantitative heating source for nanoscale thermal metrology," Nano letters, vol. 20, no. 5, pp. 3019-3029, 2020.
    [3] Lin, C. C., Wang, S. M., Chen, B. Y., Chi, C. H., Chang, I. L., & Chang, C. W., "Scanning Electron Thermal Absorbance Microscopy for Light Element Detection and Atomic Number Analysis," Nano letters, vol. 22, no. 7, pp. 2667-2673, 2022.
    [4] T.Y. Wei, K.L. Lim, Y.S. Tseng, S.L.I. Chan, " A review on the characterization of hydrogen in hydrogen storage materials," Renewable and Sustainable Energy Reviews, vol. 79, pp. 1122-1133, 2017.
    [5] Shih-Ming Wang, Yu-Cheng Chiu, Yu-Hsin Wu, Bo-Yi Chen, I-Ling Chang, Chih-Wei Chang, "Standardization and quantification of backscattered electron imaging in scanning electron microscopy," Ultramicroscopy, vol. 262, p. 113982, 2024.
    [6] Cid, A. G., Rosenkranz, R., Löffler, M., Clausner, A., Standke, Y., & Zschech, E., "Quantitative analysis of backscattered electron (BSE) contrast using low voltage scanning electron microscopy (LVSEM) and its application to Al0.22Ga0.78N/GaN layers," Ultramicroscopy, vol. 195, pp. 47-52, 2018.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE